mirror of
https://github.com/shivammehta25/Matcha-TTS.git
synced 2026-02-04 17:59:19 +08:00
Initial commit
This commit is contained in:
214
matcha/utils/utils.py
Normal file
214
matcha/utils/utils.py
Normal file
@@ -0,0 +1,214 @@
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from importlib.util import find_spec
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, Dict, Tuple
|
||||
|
||||
import gdown
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import torch
|
||||
import wget
|
||||
from omegaconf import DictConfig
|
||||
|
||||
from matcha.utils import pylogger, rich_utils
|
||||
|
||||
log = pylogger.get_pylogger(__name__)
|
||||
|
||||
|
||||
def extras(cfg: DictConfig) -> None:
|
||||
"""Applies optional utilities before the task is started.
|
||||
|
||||
Utilities:
|
||||
- Ignoring python warnings
|
||||
- Setting tags from command line
|
||||
- Rich config printing
|
||||
|
||||
:param cfg: A DictConfig object containing the config tree.
|
||||
"""
|
||||
# return if no `extras` config
|
||||
if not cfg.get("extras"):
|
||||
log.warning("Extras config not found! <cfg.extras=null>")
|
||||
return
|
||||
|
||||
# disable python warnings
|
||||
if cfg.extras.get("ignore_warnings"):
|
||||
log.info("Disabling python warnings! <cfg.extras.ignore_warnings=True>")
|
||||
warnings.filterwarnings("ignore")
|
||||
|
||||
# prompt user to input tags from command line if none are provided in the config
|
||||
if cfg.extras.get("enforce_tags"):
|
||||
log.info("Enforcing tags! <cfg.extras.enforce_tags=True>")
|
||||
rich_utils.enforce_tags(cfg, save_to_file=True)
|
||||
|
||||
# pretty print config tree using Rich library
|
||||
if cfg.extras.get("print_config"):
|
||||
log.info("Printing config tree with Rich! <cfg.extras.print_config=True>")
|
||||
rich_utils.print_config_tree(cfg, resolve=True, save_to_file=True)
|
||||
|
||||
|
||||
def task_wrapper(task_func: Callable) -> Callable:
|
||||
"""Optional decorator that controls the failure behavior when executing the task function.
|
||||
|
||||
This wrapper can be used to:
|
||||
- make sure loggers are closed even if the task function raises an exception (prevents multirun failure)
|
||||
- save the exception to a `.log` file
|
||||
- mark the run as failed with a dedicated file in the `logs/` folder (so we can find and rerun it later)
|
||||
- etc. (adjust depending on your needs)
|
||||
|
||||
Example:
|
||||
```
|
||||
@utils.task_wrapper
|
||||
def train(cfg: DictConfig) -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
||||
...
|
||||
return metric_dict, object_dict
|
||||
```
|
||||
|
||||
:param task_func: The task function to be wrapped.
|
||||
|
||||
:return: The wrapped task function.
|
||||
"""
|
||||
|
||||
def wrap(cfg: DictConfig) -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
||||
# execute the task
|
||||
try:
|
||||
metric_dict, object_dict = task_func(cfg=cfg)
|
||||
|
||||
# things to do if exception occurs
|
||||
except Exception as ex:
|
||||
# save exception to `.log` file
|
||||
log.exception("")
|
||||
|
||||
# some hyperparameter combinations might be invalid or cause out-of-memory errors
|
||||
# so when using hparam search plugins like Optuna, you might want to disable
|
||||
# raising the below exception to avoid multirun failure
|
||||
raise ex
|
||||
|
||||
# things to always do after either success or exception
|
||||
finally:
|
||||
# display output dir path in terminal
|
||||
log.info(f"Output dir: {cfg.paths.output_dir}")
|
||||
|
||||
# always close wandb run (even if exception occurs so multirun won't fail)
|
||||
if find_spec("wandb"): # check if wandb is installed
|
||||
import wandb
|
||||
|
||||
if wandb.run:
|
||||
log.info("Closing wandb!")
|
||||
wandb.finish()
|
||||
|
||||
return metric_dict, object_dict
|
||||
|
||||
return wrap
|
||||
|
||||
|
||||
def get_metric_value(metric_dict: Dict[str, Any], metric_name: str) -> float:
|
||||
"""Safely retrieves value of the metric logged in LightningModule.
|
||||
|
||||
:param metric_dict: A dict containing metric values.
|
||||
:param metric_name: The name of the metric to retrieve.
|
||||
:return: The value of the metric.
|
||||
"""
|
||||
if not metric_name:
|
||||
log.info("Metric name is None! Skipping metric value retrieval...")
|
||||
return None
|
||||
|
||||
if metric_name not in metric_dict:
|
||||
raise Exception(
|
||||
f"Metric value not found! <metric_name={metric_name}>\n"
|
||||
"Make sure metric name logged in LightningModule is correct!\n"
|
||||
"Make sure `optimized_metric` name in `hparams_search` config is correct!"
|
||||
)
|
||||
|
||||
metric_value = metric_dict[metric_name].item()
|
||||
log.info(f"Retrieved metric value! <{metric_name}={metric_value}>")
|
||||
|
||||
return metric_value
|
||||
|
||||
|
||||
def intersperse(lst, item):
|
||||
# Adds blank symbol
|
||||
result = [item] * (len(lst) * 2 + 1)
|
||||
result[1::2] = lst
|
||||
return result
|
||||
|
||||
|
||||
def save_figure_to_numpy(fig):
|
||||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
||||
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||||
return data
|
||||
|
||||
|
||||
def plot_tensor(tensor):
|
||||
plt.style.use("default")
|
||||
fig, ax = plt.subplots(figsize=(12, 3))
|
||||
im = ax.imshow(tensor, aspect="auto", origin="lower", interpolation="none")
|
||||
plt.colorbar(im, ax=ax)
|
||||
plt.tight_layout()
|
||||
fig.canvas.draw()
|
||||
data = save_figure_to_numpy(fig)
|
||||
plt.close()
|
||||
return data
|
||||
|
||||
|
||||
def save_plot(tensor, savepath):
|
||||
plt.style.use("default")
|
||||
fig, ax = plt.subplots(figsize=(12, 3))
|
||||
im = ax.imshow(tensor, aspect="auto", origin="lower", interpolation="none")
|
||||
plt.colorbar(im, ax=ax)
|
||||
plt.tight_layout()
|
||||
fig.canvas.draw()
|
||||
plt.savefig(savepath)
|
||||
plt.close()
|
||||
|
||||
|
||||
def to_numpy(tensor):
|
||||
if isinstance(tensor, np.ndarray):
|
||||
return tensor
|
||||
elif isinstance(tensor, torch.Tensor):
|
||||
return tensor.detach().cpu().numpy()
|
||||
elif isinstance(tensor, list):
|
||||
return np.array(tensor)
|
||||
else:
|
||||
raise TypeError("Unsupported type for conversion to numpy array")
|
||||
|
||||
|
||||
def get_user_data_dir(appname="matcha_tts"):
|
||||
"""
|
||||
Args:
|
||||
appname (str): Name of application
|
||||
|
||||
Returns:
|
||||
Path: path to user data directory
|
||||
"""
|
||||
|
||||
MATCHA_HOME = os.environ.get("MATCHA_HOME")
|
||||
if MATCHA_HOME is not None:
|
||||
ans = Path(MATCHA_HOME).expanduser().resolve(strict=False)
|
||||
elif sys.platform == "win32":
|
||||
import winreg # pylint: disable=import-outside-toplevel
|
||||
|
||||
key = winreg.OpenKey(
|
||||
winreg.HKEY_CURRENT_USER,
|
||||
r"Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders",
|
||||
)
|
||||
dir_, _ = winreg.QueryValueEx(key, "Local AppData")
|
||||
ans = Path(dir_).resolve(strict=False)
|
||||
elif sys.platform == "darwin":
|
||||
ans = Path("~/Library/Application Support/").expanduser()
|
||||
else:
|
||||
ans = Path.home().joinpath(".local/share")
|
||||
return ans.joinpath(appname)
|
||||
|
||||
|
||||
def assert_model_downloaded(checkpoint_path, url, use_wget=False):
|
||||
if Path(checkpoint_path).exists():
|
||||
log.debug(f"[+] Model already present at {checkpoint_path}!")
|
||||
return
|
||||
log.info(f"[-] Model not found at {checkpoint_path}! Will download it")
|
||||
checkpoint_path = str(checkpoint_path)
|
||||
if not use_wget:
|
||||
gdown.download(url=url, output=checkpoint_path, quiet=False, fuzzy=True)
|
||||
else:
|
||||
wget.download(url=url, out=checkpoint_path)
|
||||
Reference in New Issue
Block a user