Initial commit

This commit is contained in:
Shivam Mehta
2023-09-16 17:51:36 +00:00
parent b189c1983a
commit f016784049
100 changed files with 6416 additions and 0 deletions

View File

@@ -0,0 +1,114 @@
from abc import ABC
import torch
import torch.nn.functional as F
from matcha.models.components.decoder import Decoder
from matcha.utils.pylogger import get_pylogger
log = get_pylogger(__name__)
class BASECFM(torch.nn.Module, ABC):
def __init__(
self,
n_feats,
cfm_params,
n_spks=1,
spk_emb_dim=128,
):
super().__init__()
self.n_feats = n_feats
self.n_spks = n_spks
self.spk_emb_dim = spk_emb_dim
self.solver = cfm_params.solver
if hasattr(cfm_params, "sigma_min"):
self.sigma_min = cfm_params.sigma_min
else:
self.sigma_min = 1e-4
self.estimator = None
@torch.inference_mode()
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
"""Forward diffusion
Args:
z (_type_): mu + noise (we don't need this in this formulation), we will sample the noise again
mask (_type_): output_mask
mu (_type_): output of encoder
n_timesteps (_type_): number of diffusion steps
stoc (bool, optional): _description_. Defaults to False.
spks (_type_, optional): _description_. Defaults to None.
Returns:
sample: _description_
"""
z = torch.randn_like(mu) * temperature
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond)
def solve_euler(self, x, t_span, mu, mask, spks, cond):
"""
Fixed euler solver for ODEs.
Args:
x (_type_): _description_
t (_type_): _description_
"""
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
sol = []
steps = 1
while steps <= len(t_span) - 1:
dphi_dt = self.estimator(x, mask, mu, t, spks, cond)
x = x + dt * dphi_dt
t = t + dt
sol.append(x)
if steps < len(t_span) - 1:
dt = t_span[steps + 1] - t
steps += 1
return sol[-1]
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
"""Computes diffusion loss
Args:
x1 (_type_): Target
mask (_type_): target mask
mu (_type_): output of encoder
spks (_type_, optional): speaker embedding. Defaults to None.
Returns:
loss: diffusion loss
y: conditional flow
"""
b, _, t = mu.shape
# random timestep
t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype)
# sample noise p(x_0)
z = torch.randn_like(x1)
y = (1 - (1 - self.sigma_min) * t) * z + t * x1
u = x1 - (1 - self.sigma_min) * z
loss = F.mse_loss(self.estimator(y, mask, mu, t.squeeze(), spks), u, reduction="sum") / (
torch.sum(mask) * u.shape[1]
)
return loss, y
class CFM(BASECFM):
def __init__(self, in_channels, out_channel, cfm_params, decoder_params, n_spks=1, spk_emb_dim=64):
super().__init__(
n_feats=in_channels,
cfm_params=cfm_params,
n_spks=n_spks,
spk_emb_dim=spk_emb_dim,
)
in_channels = in_channels + (spk_emb_dim if n_spks > 1 else 0)
# Just change the architecture of the estimator here
self.estimator = Decoder(in_channels=in_channels, out_channels=out_channel, **decoder_params)