mirror of
https://github.com/shivammehta25/Matcha-TTS.git
synced 2026-02-04 17:59:19 +08:00
Initial commit
This commit is contained in:
114
matcha/models/components/flow_matching.py
Normal file
114
matcha/models/components/flow_matching.py
Normal file
@@ -0,0 +1,114 @@
|
||||
from abc import ABC
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from matcha.models.components.decoder import Decoder
|
||||
from matcha.utils.pylogger import get_pylogger
|
||||
|
||||
log = get_pylogger(__name__)
|
||||
|
||||
|
||||
class BASECFM(torch.nn.Module, ABC):
|
||||
def __init__(
|
||||
self,
|
||||
n_feats,
|
||||
cfm_params,
|
||||
n_spks=1,
|
||||
spk_emb_dim=128,
|
||||
):
|
||||
super().__init__()
|
||||
self.n_feats = n_feats
|
||||
self.n_spks = n_spks
|
||||
self.spk_emb_dim = spk_emb_dim
|
||||
self.solver = cfm_params.solver
|
||||
if hasattr(cfm_params, "sigma_min"):
|
||||
self.sigma_min = cfm_params.sigma_min
|
||||
else:
|
||||
self.sigma_min = 1e-4
|
||||
|
||||
self.estimator = None
|
||||
|
||||
@torch.inference_mode()
|
||||
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
||||
"""Forward diffusion
|
||||
|
||||
Args:
|
||||
z (_type_): mu + noise (we don't need this in this formulation), we will sample the noise again
|
||||
mask (_type_): output_mask
|
||||
mu (_type_): output of encoder
|
||||
n_timesteps (_type_): number of diffusion steps
|
||||
stoc (bool, optional): _description_. Defaults to False.
|
||||
spks (_type_, optional): _description_. Defaults to None.
|
||||
|
||||
Returns:
|
||||
sample: _description_
|
||||
"""
|
||||
z = torch.randn_like(mu) * temperature
|
||||
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
|
||||
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond)
|
||||
|
||||
def solve_euler(self, x, t_span, mu, mask, spks, cond):
|
||||
"""
|
||||
Fixed euler solver for ODEs.
|
||||
Args:
|
||||
x (_type_): _description_
|
||||
t (_type_): _description_
|
||||
"""
|
||||
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
||||
sol = []
|
||||
|
||||
steps = 1
|
||||
while steps <= len(t_span) - 1:
|
||||
dphi_dt = self.estimator(x, mask, mu, t, spks, cond)
|
||||
|
||||
x = x + dt * dphi_dt
|
||||
t = t + dt
|
||||
sol.append(x)
|
||||
if steps < len(t_span) - 1:
|
||||
dt = t_span[steps + 1] - t
|
||||
steps += 1
|
||||
|
||||
return sol[-1]
|
||||
|
||||
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
||||
"""Computes diffusion loss
|
||||
|
||||
Args:
|
||||
x1 (_type_): Target
|
||||
mask (_type_): target mask
|
||||
mu (_type_): output of encoder
|
||||
spks (_type_, optional): speaker embedding. Defaults to None.
|
||||
|
||||
Returns:
|
||||
loss: diffusion loss
|
||||
y: conditional flow
|
||||
"""
|
||||
b, _, t = mu.shape
|
||||
|
||||
# random timestep
|
||||
t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype)
|
||||
# sample noise p(x_0)
|
||||
z = torch.randn_like(x1)
|
||||
|
||||
y = (1 - (1 - self.sigma_min) * t) * z + t * x1
|
||||
u = x1 - (1 - self.sigma_min) * z
|
||||
|
||||
loss = F.mse_loss(self.estimator(y, mask, mu, t.squeeze(), spks), u, reduction="sum") / (
|
||||
torch.sum(mask) * u.shape[1]
|
||||
)
|
||||
return loss, y
|
||||
|
||||
|
||||
class CFM(BASECFM):
|
||||
def __init__(self, in_channels, out_channel, cfm_params, decoder_params, n_spks=1, spk_emb_dim=64):
|
||||
super().__init__(
|
||||
n_feats=in_channels,
|
||||
cfm_params=cfm_params,
|
||||
n_spks=n_spks,
|
||||
spk_emb_dim=spk_emb_dim,
|
||||
)
|
||||
|
||||
in_channels = in_channels + (spk_emb_dim if n_spks > 1 else 0)
|
||||
# Just change the architecture of the estimator here
|
||||
self.estimator = Decoder(in_channels=in_channels, out_channels=out_channel, **decoder_params)
|
||||
Reference in New Issue
Block a user