mirror of
https://github.com/shivammehta25/Matcha-TTS.git
synced 2026-02-05 18:29:19 +08:00
Initial commit
This commit is contained in:
52
configs/hparams_search/mnist_optuna.yaml
Normal file
52
configs/hparams_search/mnist_optuna.yaml
Normal file
@@ -0,0 +1,52 @@
|
||||
# @package _global_
|
||||
|
||||
# example hyperparameter optimization of some experiment with Optuna:
|
||||
# python train.py -m hparams_search=mnist_optuna experiment=example
|
||||
|
||||
defaults:
|
||||
- override /hydra/sweeper: optuna
|
||||
|
||||
# choose metric which will be optimized by Optuna
|
||||
# make sure this is the correct name of some metric logged in lightning module!
|
||||
optimized_metric: "val/acc_best"
|
||||
|
||||
# here we define Optuna hyperparameter search
|
||||
# it optimizes for value returned from function with @hydra.main decorator
|
||||
# docs: https://hydra.cc/docs/next/plugins/optuna_sweeper
|
||||
hydra:
|
||||
mode: "MULTIRUN" # set hydra to multirun by default if this config is attached
|
||||
|
||||
sweeper:
|
||||
_target_: hydra_plugins.hydra_optuna_sweeper.optuna_sweeper.OptunaSweeper
|
||||
|
||||
# storage URL to persist optimization results
|
||||
# for example, you can use SQLite if you set 'sqlite:///example.db'
|
||||
storage: null
|
||||
|
||||
# name of the study to persist optimization results
|
||||
study_name: null
|
||||
|
||||
# number of parallel workers
|
||||
n_jobs: 1
|
||||
|
||||
# 'minimize' or 'maximize' the objective
|
||||
direction: maximize
|
||||
|
||||
# total number of runs that will be executed
|
||||
n_trials: 20
|
||||
|
||||
# choose Optuna hyperparameter sampler
|
||||
# you can choose bayesian sampler (tpe), random search (without optimization), grid sampler, and others
|
||||
# docs: https://optuna.readthedocs.io/en/stable/reference/samplers.html
|
||||
sampler:
|
||||
_target_: optuna.samplers.TPESampler
|
||||
seed: 1234
|
||||
n_startup_trials: 10 # number of random sampling runs before optimization starts
|
||||
|
||||
# define hyperparameter search space
|
||||
params:
|
||||
model.optimizer.lr: interval(0.0001, 0.1)
|
||||
data.batch_size: choice(32, 64, 128, 256)
|
||||
model.net.lin1_size: choice(64, 128, 256)
|
||||
model.net.lin2_size: choice(64, 128, 256)
|
||||
model.net.lin3_size: choice(32, 64, 128, 256)
|
||||
Reference in New Issue
Block a user