Adding the possibility to train with durations

This commit is contained in:
Shivam Mehta
2024-05-27 13:24:21 +02:00
parent e658aee6a5
commit aa496aa13f
7 changed files with 54 additions and 12 deletions

View File

@@ -19,3 +19,4 @@ data_statistics: # Computed for ljspeech dataset
mel_mean: -5.536622
mel_std: 2.116101
seed: ${seed}
load_durations: false

View File

@@ -13,3 +13,4 @@ n_feats: 80
data_statistics: ${data.data_statistics}
out_size: null # Must be divisible by 4
prior_loss: true
use_precomputed_durations: ${data.load_durations}

View File

@@ -1,6 +1,8 @@
import random
from pathlib import Path
from typing import Any, Dict, Optional
import numpy as np
import torch
import torchaudio as ta
from lightning import LightningDataModule
@@ -39,6 +41,7 @@ class TextMelDataModule(LightningDataModule):
f_max,
data_statistics,
seed,
load_durations,
):
super().__init__()
@@ -68,6 +71,7 @@ class TextMelDataModule(LightningDataModule):
self.hparams.f_max,
self.hparams.data_statistics,
self.hparams.seed,
self.hparams.load_durations,
)
self.validset = TextMelDataset( # pylint: disable=attribute-defined-outside-init
self.hparams.valid_filelist_path,
@@ -83,6 +87,7 @@ class TextMelDataModule(LightningDataModule):
self.hparams.f_max,
self.hparams.data_statistics,
self.hparams.seed,
self.hparams.load_durations,
)
def train_dataloader(self):
@@ -134,6 +139,7 @@ class TextMelDataset(torch.utils.data.Dataset):
f_max=8000,
data_parameters=None,
seed=None,
load_durations=False,
):
self.filepaths_and_text = parse_filelist(filelist_path)
self.n_spks = n_spks
@@ -146,6 +152,8 @@ class TextMelDataset(torch.utils.data.Dataset):
self.win_length = win_length
self.f_min = f_min
self.f_max = f_max
self.load_durations = load_durations
if data_parameters is not None:
self.data_parameters = data_parameters
else:
@@ -167,7 +175,26 @@ class TextMelDataset(torch.utils.data.Dataset):
text, cleaned_text = self.get_text(text, add_blank=self.add_blank)
mel = self.get_mel(filepath)
return {"x": text, "y": mel, "spk": spk, "filepath": filepath, "x_text": cleaned_text}
durations = self.get_durations(filepath, text) if self.load_durations else None
return {"x": text, "y": mel, "spk": spk, "filepath": filepath, "x_text": cleaned_text, "durations": durations}
def get_durations(self, filepath, text):
filepath = Path(filepath)
data_dir, name = filepath.parent.parent, filepath.stem
try:
dur_loc = data_dir / "durations" / f"{name}.npy"
durs = torch.from_numpy(np.load(dur_loc).astype(int))
except FileNotFoundError as e:
raise FileNotFoundError(
f"Tried loading the durations but durations didn't exist at {dur_loc}, make sure you've generate the durations first using: python matcha/utils/get_durations_from_trained_model.py \n"
) from e
assert len(durs) == len(text), f"Length of durations {len(durs)} and text {len(text)} do not match"
return durs
def get_mel(self, filepath):
audio, sr = ta.load(filepath)
@@ -214,6 +241,8 @@ class TextMelBatchCollate:
y = torch.zeros((B, n_feats, y_max_length), dtype=torch.float32)
x = torch.zeros((B, x_max_length), dtype=torch.long)
durations = torch.zeros((B, x_max_length), dtype=torch.long)
y_lengths, x_lengths = [], []
spks = []
filepaths, x_texts = [], []
@@ -226,6 +255,8 @@ class TextMelBatchCollate:
spks.append(item["spk"])
filepaths.append(item["filepath"])
x_texts.append(item["x_text"])
if item["durations"] is not None:
durations[i, : item["durations"].shape[-1]] = item["durations"]
y_lengths = torch.tensor(y_lengths, dtype=torch.long)
x_lengths = torch.tensor(x_lengths, dtype=torch.long)
@@ -239,4 +270,5 @@ class TextMelBatchCollate:
"spks": spks,
"filepaths": filepaths,
"x_texts": x_texts,
"durations": durations if not torch.eq(durations, 0).all() else None,
}

View File

@@ -65,6 +65,7 @@ class BaseLightningClass(LightningModule, ABC):
y_lengths=y_lengths,
spks=spks,
out_size=self.out_size,
durations=batch["durations"],
)
return {
"dur_loss": dur_loss,

View File

@@ -35,6 +35,7 @@ class MatchaTTS(BaseLightningClass): # 🍵
optimizer=None,
scheduler=None,
prior_loss=True,
use_precomputed_durations=False,
):
super().__init__()
@@ -46,6 +47,7 @@ class MatchaTTS(BaseLightningClass): # 🍵
self.n_feats = n_feats
self.out_size = out_size
self.prior_loss = prior_loss
self.use_precomputed_durations = use_precomputed_durations
if n_spks > 1:
self.spk_emb = torch.nn.Embedding(n_spks, spk_emb_dim)
@@ -147,7 +149,7 @@ class MatchaTTS(BaseLightningClass): # 🍵
"rtf": rtf,
}
def forward(self, x, x_lengths, y, y_lengths, spks=None, out_size=None, cond=None):
def forward(self, x, x_lengths, y, y_lengths, spks=None, out_size=None, cond=None, durations=None):
"""
Computes 3 losses:
1. duration loss: loss between predicted token durations and those extracted by Monotinic Alignment Search (MAS).
@@ -179,17 +181,20 @@ class MatchaTTS(BaseLightningClass): # 🍵
y_mask = sequence_mask(y_lengths, y_max_length).unsqueeze(1).to(x_mask)
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
# Use MAS to find most likely alignment `attn` between text and mel-spectrogram
with torch.no_grad():
const = -0.5 * math.log(2 * math.pi) * self.n_feats
factor = -0.5 * torch.ones(mu_x.shape, dtype=mu_x.dtype, device=mu_x.device)
y_square = torch.matmul(factor.transpose(1, 2), y**2)
y_mu_double = torch.matmul(2.0 * (factor * mu_x).transpose(1, 2), y)
mu_square = torch.sum(factor * (mu_x**2), 1).unsqueeze(-1)
log_prior = y_square - y_mu_double + mu_square + const
if self.use_precomputed_durations:
attn = generate_path(durations.squeeze(1), attn_mask.squeeze(1))
else:
# Use MAS to find most likely alignment `attn` between text and mel-spectrogram
with torch.no_grad():
const = -0.5 * math.log(2 * math.pi) * self.n_feats
factor = -0.5 * torch.ones(mu_x.shape, dtype=mu_x.dtype, device=mu_x.device)
y_square = torch.matmul(factor.transpose(1, 2), y**2)
y_mu_double = torch.matmul(2.0 * (factor * mu_x).transpose(1, 2), y)
mu_square = torch.sum(factor * (mu_x**2), 1).unsqueeze(-1)
log_prior = y_square - y_mu_double + mu_square + const
attn = monotonic_align.maximum_path(log_prior, attn_mask.squeeze(1))
attn = attn.detach()
attn = monotonic_align.maximum_path(log_prior, attn_mask.squeeze(1))
attn = attn.detach() # b, t_text, T_mel
# Compute loss between predicted log-scaled durations and those obtained from MAS
# refered to as prior loss in the paper

View File

@@ -94,6 +94,7 @@ def main():
cfg["batch_size"] = args.batch_size
cfg["train_filelist_path"] = str(os.path.join(root_path, cfg["train_filelist_path"]))
cfg["valid_filelist_path"] = str(os.path.join(root_path, cfg["valid_filelist_path"]))
cfg["load_durations"] = False
text_mel_datamodule = TextMelDataModule(**cfg)
text_mel_datamodule.setup()

View File

@@ -140,6 +140,7 @@ def main():
cfg["batch_size"] = args.batch_size
cfg["train_filelist_path"] = str(os.path.join(root_path, cfg["train_filelist_path"]))
cfg["valid_filelist_path"] = str(os.path.join(root_path, cfg["valid_filelist_path"]))
cfg["load_durations"] = False
if args.output_folder is not None:
output_folder = Path(args.output_folder)