mirror of
https://github.com/shivammehta25/Matcha-TTS.git
synced 2026-02-05 18:29:19 +08:00
ljspeech/hificaptain from #99
This commit is contained in:
1
.gitignore
vendored
1
.gitignore
vendored
@@ -161,3 +161,4 @@ generator_v1
|
|||||||
g_02500000
|
g_02500000
|
||||||
gradio_cached_examples/
|
gradio_cached_examples/
|
||||||
synth_output/
|
synth_output/
|
||||||
|
/data
|
||||||
|
|||||||
@@ -5,8 +5,8 @@ defaults:
|
|||||||
# Dataset URL: https://ast-astrec.nict.go.jp/en/release/hi-fi-captain/
|
# Dataset URL: https://ast-astrec.nict.go.jp/en/release/hi-fi-captain/
|
||||||
_target_: matcha.data.text_mel_datamodule.TextMelDataModule
|
_target_: matcha.data.text_mel_datamodule.TextMelDataModule
|
||||||
name: hi-fi_en-US_female
|
name: hi-fi_en-US_female
|
||||||
train_filelist_path: data/filelists/hi-fi-captain-en-us-female_train.txt
|
train_filelist_path: data/hi-fi_en-US_female/train.txt
|
||||||
valid_filelist_path: data/filelists/hi-fi-captain-en-us-female_val.txt
|
valid_filelist_path: data/hi-fi_en-US_female/val.txt
|
||||||
batch_size: 32
|
batch_size: 32
|
||||||
cleaners: [english_cleaners_piper]
|
cleaners: [english_cleaners_piper]
|
||||||
data_statistics: # Computed for this dataset
|
data_statistics: # Computed for this dataset
|
||||||
|
|||||||
0
matcha/utils/data/__init__.py
Normal file
0
matcha/utils/data/__init__.py
Normal file
148
matcha/utils/data/hificaptain.py
Normal file
148
matcha/utils/data/hificaptain.py
Normal file
@@ -0,0 +1,148 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import tempfile
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torchaudio
|
||||||
|
from torch.hub import download_url_to_file
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
from matcha.utils.data.utils import _extract_zip
|
||||||
|
|
||||||
|
URLS = {
|
||||||
|
"en-US": {
|
||||||
|
"female": "https://ast-astrec.nict.go.jp/release/hi-fi-captain/hfc_en-US_F.zip",
|
||||||
|
"male": "https://ast-astrec.nict.go.jp/release/hi-fi-captain/hfc_en-US_M.zip",
|
||||||
|
},
|
||||||
|
"ja-JP": {
|
||||||
|
"female": "https://ast-astrec.nict.go.jp/release/hi-fi-captain/hfc_ja-JP_F.zip",
|
||||||
|
"male": "https://ast-astrec.nict.go.jp/release/hi-fi-captain/hfc_ja-JP_M.zip",
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
INFO_PAGE = "https://ast-astrec.nict.go.jp/en/release/hi-fi-captain/"
|
||||||
|
|
||||||
|
# On their website they say "We NICT open-sourced Hi-Fi-CAPTAIN",
|
||||||
|
# but they use this very-much-not-open-source licence.
|
||||||
|
# Dunno if this is open washing or stupidity.
|
||||||
|
LICENCE = "CC BY-NC-SA 4.0"
|
||||||
|
|
||||||
|
# I'd normally put the citation here. It's on their website.
|
||||||
|
# Boo to non-open-source stuff.
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
|
||||||
|
parser.add_argument("-s", "--save-dir", type=str, default=None, help="Place to store the downloaded zip files")
|
||||||
|
parser.add_argument(
|
||||||
|
"-r",
|
||||||
|
"--skip-resampling",
|
||||||
|
action="store_true",
|
||||||
|
default=False,
|
||||||
|
help="Skip resampling the data (from 48 to 22.05)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"-l", "--language", type=str, choices=["en-US", "ja-JP"], default="en-US", help="The language to download"
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"-g",
|
||||||
|
"--gender",
|
||||||
|
type=str,
|
||||||
|
choices=["male", "female"],
|
||||||
|
default="female",
|
||||||
|
help="The gender of the speaker to download",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"-o",
|
||||||
|
"--output_dir",
|
||||||
|
type=str,
|
||||||
|
default="data",
|
||||||
|
help="Place to store the converted data. Top-level only, the subdirectory will be created",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def process_text(infile, outpath: Path):
|
||||||
|
outmode = "w"
|
||||||
|
if infile.endswith("dev.txt"):
|
||||||
|
outfile = outpath / "valid.txt"
|
||||||
|
elif infile.endswith("eval.txt"):
|
||||||
|
outfile = outpath / "test.txt"
|
||||||
|
else:
|
||||||
|
outfile = outpath / "train.txt"
|
||||||
|
if outfile.exists():
|
||||||
|
outmode = "a"
|
||||||
|
with (
|
||||||
|
open(infile, encoding="utf-8") as inf,
|
||||||
|
open(outfile, outmode, encoding="utf-8") as of,
|
||||||
|
):
|
||||||
|
for line in inf.readlines():
|
||||||
|
line = line.strip()
|
||||||
|
fileid, rest = line.split(" ", maxsplit=1)
|
||||||
|
outfile = str(outpath / f"{fileid}.wav")
|
||||||
|
of.write(f"{outfile}|{rest}\n")
|
||||||
|
|
||||||
|
|
||||||
|
def process_files(zipfile, outpath, resample=True):
|
||||||
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
||||||
|
for filename in tqdm(_extract_zip(zipfile, tmpdirname)):
|
||||||
|
if not filename.startswith(tmpdirname):
|
||||||
|
filename = os.path.join(tmpdirname, filename)
|
||||||
|
if filename.endswith(".txt"):
|
||||||
|
process_text(filename, outpath)
|
||||||
|
elif filename.endswith(".wav"):
|
||||||
|
filepart = filename.rsplit("/", maxsplit=1)[-1]
|
||||||
|
outfile = str(outpath / filepart)
|
||||||
|
arr, sr = torchaudio.load(filename)
|
||||||
|
if resample:
|
||||||
|
arr = torchaudio.functional.resample(arr, orig_freq=sr, new_freq=22050)
|
||||||
|
torchaudio.save(outfile, arr, 22050)
|
||||||
|
else:
|
||||||
|
continue
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
|
||||||
|
save_dir = None
|
||||||
|
if args.save_dir:
|
||||||
|
save_dir = Path(args.save_dir)
|
||||||
|
if not save_dir.is_dir():
|
||||||
|
save_dir.mkdir()
|
||||||
|
|
||||||
|
if not args.output_dir:
|
||||||
|
print("output directory not specified, exiting")
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
|
URL = URLS[args.language][args.gender]
|
||||||
|
dirname = f"hi-fi_{args.language}_{args.gender}"
|
||||||
|
|
||||||
|
outbasepath = Path(args.output_dir)
|
||||||
|
if not outbasepath.is_dir():
|
||||||
|
outbasepath.mkdir()
|
||||||
|
outpath = outbasepath / dirname
|
||||||
|
if not outpath.is_dir():
|
||||||
|
outpath.mkdir()
|
||||||
|
|
||||||
|
resample = True
|
||||||
|
if args.skip_resampling:
|
||||||
|
resample = False
|
||||||
|
|
||||||
|
if save_dir:
|
||||||
|
zipname = URL.rsplit("/", maxsplit=1)[-1]
|
||||||
|
zipfile = save_dir / zipname
|
||||||
|
if not zipfile.exists():
|
||||||
|
download_url_to_file(URL, zipfile, progress=True)
|
||||||
|
process_files(zipfile, outpath, resample)
|
||||||
|
else:
|
||||||
|
with tempfile.NamedTemporaryFile(suffix=".zip", delete=True) as zf:
|
||||||
|
download_url_to_file(URL, zf.name, progress=True)
|
||||||
|
process_files(zf.name, outpath, resample)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
97
matcha/utils/data/ljspeech.py
Normal file
97
matcha/utils/data/ljspeech.py
Normal file
@@ -0,0 +1,97 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
import argparse
|
||||||
|
import random
|
||||||
|
import tempfile
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
from torch.hub import download_url_to_file
|
||||||
|
|
||||||
|
from matcha.utils.data.utils import _extract_tar
|
||||||
|
|
||||||
|
URL = "https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2"
|
||||||
|
|
||||||
|
INFO_PAGE = "https://keithito.com/LJ-Speech-Dataset/"
|
||||||
|
|
||||||
|
LICENCE = "Public domain (LibriVox copyright disclaimer)"
|
||||||
|
|
||||||
|
CITATION = """
|
||||||
|
@misc{ljspeech17,
|
||||||
|
author = {Keith Ito and Linda Johnson},
|
||||||
|
title = {The LJ Speech Dataset},
|
||||||
|
howpublished = {\\url{https://keithito.com/LJ-Speech-Dataset/}},
|
||||||
|
year = 2017
|
||||||
|
}
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
def decision():
|
||||||
|
return random.random() < 0.98
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
|
||||||
|
parser.add_argument("-s", "--save-dir", type=str, default=None, help="Place to store the downloaded zip files")
|
||||||
|
parser.add_argument(
|
||||||
|
"output_dir",
|
||||||
|
type=str,
|
||||||
|
nargs="?",
|
||||||
|
default="data",
|
||||||
|
help="Place to store the converted data (subdirectory LJSpeech-1.1 will be created)",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def process_csv(ljpath: Path):
|
||||||
|
if (ljpath / "metadata.csv").exists():
|
||||||
|
basepath = ljpath
|
||||||
|
elif (ljpath / "LJSpeech-1.1" / "metadata.csv").exists():
|
||||||
|
basepath = ljpath / "LJSpeech-1.1"
|
||||||
|
csvpath = basepath / "metadata.csv"
|
||||||
|
wavpath = basepath / "wavs"
|
||||||
|
|
||||||
|
with (
|
||||||
|
open(csvpath, encoding="utf-8") as csvf,
|
||||||
|
open(basepath / "train.txt", "w", encoding="utf-8") as tf,
|
||||||
|
open(basepath / "val.txt", "w", encoding="utf-8") as vf,
|
||||||
|
):
|
||||||
|
for line in csvf.readlines():
|
||||||
|
line = line.strip()
|
||||||
|
parts = line.split("|")
|
||||||
|
wavfile = str(wavpath / f"{parts[0]}.wav")
|
||||||
|
if decision():
|
||||||
|
tf.write(f"{wavfile}|{parts[1]}\n")
|
||||||
|
else:
|
||||||
|
vf.write(f"{wavfile}|{parts[1]}\n")
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
|
||||||
|
save_dir = None
|
||||||
|
if args.save_dir:
|
||||||
|
save_dir = Path(args.save_dir)
|
||||||
|
if not save_dir.is_dir():
|
||||||
|
save_dir.mkdir()
|
||||||
|
|
||||||
|
outpath = Path(args.output_dir)
|
||||||
|
if not outpath.is_dir():
|
||||||
|
outpath.mkdir()
|
||||||
|
|
||||||
|
if save_dir:
|
||||||
|
tarname = URL.rsplit("/", maxsplit=1)[-1]
|
||||||
|
tarfile = save_dir / tarname
|
||||||
|
if not tarfile.exists():
|
||||||
|
download_url_to_file(URL, str(tarfile), progress=True)
|
||||||
|
_extract_tar(tarfile, outpath)
|
||||||
|
process_csv(outpath)
|
||||||
|
else:
|
||||||
|
with tempfile.NamedTemporaryFile(suffix=".tar.bz2", delete=True) as zf:
|
||||||
|
download_url_to_file(URL, zf.name, progress=True)
|
||||||
|
_extract_tar(zf.name, outpath)
|
||||||
|
process_csv(outpath)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
53
matcha/utils/data/utils.py
Normal file
53
matcha/utils/data/utils.py
Normal file
@@ -0,0 +1,53 @@
|
|||||||
|
# taken from https://github.com/pytorch/audio/blob/main/src/torchaudio/datasets/utils.py
|
||||||
|
# Copyright (c) 2017 Facebook Inc. (Soumith Chintala)
|
||||||
|
# Licence: BSD 2-Clause
|
||||||
|
# pylint: disable=C0123
|
||||||
|
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import tarfile
|
||||||
|
import zipfile
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any, List, Optional, Union
|
||||||
|
|
||||||
|
_LG = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
def _extract_tar(from_path: Union[str, Path], to_path: Optional[str] = None, overwrite: bool = False) -> List[str]:
|
||||||
|
if type(from_path) is Path:
|
||||||
|
from_path = str(Path)
|
||||||
|
|
||||||
|
if to_path is None:
|
||||||
|
to_path = os.path.dirname(from_path)
|
||||||
|
|
||||||
|
with tarfile.open(from_path, "r") as tar:
|
||||||
|
files = []
|
||||||
|
for file_ in tar: # type: Any
|
||||||
|
file_path = os.path.join(to_path, file_.name)
|
||||||
|
if file_.isfile():
|
||||||
|
files.append(file_path)
|
||||||
|
if os.path.exists(file_path):
|
||||||
|
_LG.info("%s already extracted.", file_path)
|
||||||
|
if not overwrite:
|
||||||
|
continue
|
||||||
|
tar.extract(file_, to_path)
|
||||||
|
return files
|
||||||
|
|
||||||
|
|
||||||
|
def _extract_zip(from_path: Union[str, Path], to_path: Optional[str] = None, overwrite: bool = False) -> List[str]:
|
||||||
|
if type(from_path) is Path:
|
||||||
|
from_path = str(Path)
|
||||||
|
|
||||||
|
if to_path is None:
|
||||||
|
to_path = os.path.dirname(from_path)
|
||||||
|
|
||||||
|
with zipfile.ZipFile(from_path, "r") as zfile:
|
||||||
|
files = zfile.namelist()
|
||||||
|
for file_ in files:
|
||||||
|
file_path = os.path.join(to_path, file_)
|
||||||
|
if os.path.exists(file_path):
|
||||||
|
_LG.info("%s already extracted.", file_path)
|
||||||
|
if not overwrite:
|
||||||
|
continue
|
||||||
|
zfile.extract(file_, to_path)
|
||||||
|
return files
|
||||||
Reference in New Issue
Block a user