mirror of
https://github.com/shivammehta25/Matcha-TTS.git
synced 2026-02-04 09:49:21 +08:00
49
README.md
49
README.md
@@ -189,6 +189,55 @@ python matcha/train.py experiment=ljspeech trainer.devices=[0,1]
|
||||
matcha-tts --text "<INPUT TEXT>" --checkpoint_path <PATH TO CHECKPOINT>
|
||||
```
|
||||
|
||||
## ONNX support
|
||||
|
||||
It is possible to export Matcha checkpoints to [ONNX](https://onnx.ai/), and run inference on the exported ONNX graph.
|
||||
|
||||
### ONNX export
|
||||
|
||||
To export a checkpoint to ONNX, run the following:
|
||||
|
||||
```bash
|
||||
python3 -m matcha.onnx.export matcha.ckpt model.onnx --n-timesteps 5
|
||||
```
|
||||
|
||||
Optionally, the ONNX exporter accepts **vocoder-name** and **vocoder-checkpoint** arguments. This enables you to embed the vocoder in the exported graph and generate waveforms in a single run (similar to end-to-end TTS systems).
|
||||
|
||||
**Note** that `n_timesteps` is treated as a hyper-parameter rather than a model input. This means you should specify it during export (not during inference). If not specified, `n_timesteps` is set to **5**.
|
||||
|
||||
**Important**: for now, torch>=2.1.0 is needed for export since the `scaled_product_attention` operator is not exportable in older versions. Until the final version is released, those who want to export their models must install torch>=2.1.0 manually as a pre-release.
|
||||
|
||||
### ONNX Inference
|
||||
|
||||
To run inference on the exported model, use the following:
|
||||
|
||||
```bash
|
||||
python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs
|
||||
```
|
||||
|
||||
You can also control synthesis parameters:
|
||||
|
||||
```bash
|
||||
python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs --temperature 0.4 --speaking_rate 0.9 --spk 0
|
||||
```
|
||||
|
||||
To run inference on **GPU**, make sure to install **onnxruntime-gpu** package, and then pass `--gpu` to the inference command:
|
||||
|
||||
```bash
|
||||
python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs --gpu
|
||||
```
|
||||
|
||||
If you exported only Matcha to ONNX, this will write mel-spectrogram as graphs and `numpy` arrays to the output directory.
|
||||
If you embedded the vocoder in the exported graph, this will write `.wav` audio files to the output directory.
|
||||
|
||||
If you exported only Matcha to ONNX, and you want to run a full TTS pipeline, you can pass a path to a vocoder model in `ONNX` format:
|
||||
|
||||
```bash
|
||||
python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs --vocoder hifigan.small.onnx
|
||||
```
|
||||
|
||||
This will write `.wav` audio files to the output directory.
|
||||
|
||||
## Citation information
|
||||
|
||||
If you use our code or otherwise find this work useful, please cite our paper:
|
||||
|
||||
@@ -116,7 +116,7 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
||||
w = torch.exp(logw) * x_mask
|
||||
w_ceil = torch.ceil(w) * length_scale
|
||||
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
||||
y_max_length = int(y_lengths.max())
|
||||
y_max_length = y_lengths.max()
|
||||
y_max_length_ = fix_len_compatibility(y_max_length)
|
||||
|
||||
# Using obtained durations `w` construct alignment map `attn`
|
||||
|
||||
0
matcha/onnx/__init__.py
Normal file
0
matcha/onnx/__init__.py
Normal file
181
matcha/onnx/export.py
Normal file
181
matcha/onnx/export.py
Normal file
@@ -0,0 +1,181 @@
|
||||
import argparse
|
||||
import random
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from lightning import LightningModule
|
||||
|
||||
from matcha.cli import VOCODER_URLS, load_matcha, load_vocoder
|
||||
|
||||
DEFAULT_OPSET = 15
|
||||
|
||||
SEED = 1234
|
||||
random.seed(SEED)
|
||||
np.random.seed(SEED)
|
||||
torch.manual_seed(SEED)
|
||||
torch.cuda.manual_seed(SEED)
|
||||
torch.backends.cudnn.deterministic = True
|
||||
torch.backends.cudnn.benchmark = False
|
||||
|
||||
|
||||
class MatchaWithVocoder(LightningModule):
|
||||
def __init__(self, matcha, vocoder):
|
||||
super().__init__()
|
||||
self.matcha = matcha
|
||||
self.vocoder = vocoder
|
||||
|
||||
def forward(self, x, x_lengths, scales, spks=None):
|
||||
mel, mel_lengths = self.matcha(x, x_lengths, scales, spks)
|
||||
wavs = self.vocoder(mel).clamp(-1, 1)
|
||||
lengths = mel_lengths * 256
|
||||
return wavs.squeeze(1), lengths
|
||||
|
||||
|
||||
def get_exportable_module(matcha, vocoder, n_timesteps):
|
||||
"""
|
||||
Return an appropriate `LighteningModule` and output-node names
|
||||
based on whether the vocoder is embedded in the final graph
|
||||
"""
|
||||
|
||||
def onnx_forward_func(x, x_lengths, scales, spks=None):
|
||||
"""
|
||||
Custom forward function for accepting
|
||||
scaler parameters as tensors
|
||||
"""
|
||||
# Extract scaler parameters from tensors
|
||||
temperature = scales[0]
|
||||
length_scale = scales[1]
|
||||
output = matcha.synthesise(x, x_lengths, n_timesteps, temperature, spks, length_scale)
|
||||
return output["mel"], output["mel_lengths"]
|
||||
|
||||
# Monkey-patch Matcha's forward function
|
||||
matcha.forward = onnx_forward_func
|
||||
|
||||
if vocoder is None:
|
||||
model, output_names = matcha, ["mel", "mel_lengths"]
|
||||
else:
|
||||
model = MatchaWithVocoder(matcha, vocoder)
|
||||
output_names = ["wav", "wav_lengths"]
|
||||
return model, output_names
|
||||
|
||||
|
||||
def get_inputs(is_multi_speaker):
|
||||
"""
|
||||
Create dummy inputs for tracing
|
||||
"""
|
||||
dummy_input_length = 50
|
||||
x = torch.randint(low=0, high=20, size=(1, dummy_input_length), dtype=torch.long)
|
||||
x_lengths = torch.LongTensor([dummy_input_length])
|
||||
|
||||
# Scales
|
||||
temperature = 0.667
|
||||
length_scale = 1.0
|
||||
scales = torch.Tensor([temperature, length_scale])
|
||||
|
||||
model_inputs = [x, x_lengths, scales]
|
||||
input_names = [
|
||||
"x",
|
||||
"x_lengths",
|
||||
"scales",
|
||||
]
|
||||
|
||||
if is_multi_speaker:
|
||||
spks = torch.LongTensor([1])
|
||||
model_inputs.append(spks)
|
||||
input_names.append("spks")
|
||||
|
||||
return tuple(model_inputs), input_names
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Export 🍵 Matcha-TTS to ONNX")
|
||||
|
||||
parser.add_argument(
|
||||
"checkpoint_path",
|
||||
type=str,
|
||||
help="Path to the model checkpoint",
|
||||
)
|
||||
parser.add_argument("output", type=str, help="Path to output `.onnx` file")
|
||||
parser.add_argument(
|
||||
"--n-timesteps", type=int, default=5, help="Number of steps to use for reverse diffusion in decoder (default 5)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--vocoder-name",
|
||||
type=str,
|
||||
choices=list(VOCODER_URLS.keys()),
|
||||
default=None,
|
||||
help="Name of the vocoder to embed in the ONNX graph",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--vocoder-checkpoint-path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Vocoder checkpoint to embed in the ONNX graph for an `e2e` like experience",
|
||||
)
|
||||
parser.add_argument("--opset", type=int, default=DEFAULT_OPSET, help="ONNX opset version to use (default 15")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
print(f"[🍵] Loading Matcha checkpoint from {args.checkpoint_path}")
|
||||
print(f"Setting n_timesteps to {args.n_timesteps}")
|
||||
|
||||
checkpoint_path = Path(args.checkpoint_path)
|
||||
matcha = load_matcha(checkpoint_path.stem, checkpoint_path, "cpu")
|
||||
|
||||
if args.vocoder_name or args.vocoder_checkpoint_path:
|
||||
assert (
|
||||
args.vocoder_name and args.vocoder_checkpoint_path
|
||||
), "Both vocoder_name and vocoder-checkpoint are required when embedding the vocoder in the ONNX graph."
|
||||
vocoder, _ = load_vocoder(args.vocoder_name, args.vocoder_checkpoint_path, "cpu")
|
||||
else:
|
||||
vocoder = None
|
||||
|
||||
is_multi_speaker = matcha.n_spks > 1
|
||||
|
||||
dummy_input, input_names = get_inputs(is_multi_speaker)
|
||||
model, output_names = get_exportable_module(matcha, vocoder, args.n_timesteps)
|
||||
|
||||
# Set dynamic shape for inputs/outputs
|
||||
dynamic_axes = {
|
||||
"x": {0: "batch_size", 1: "time"},
|
||||
"x_lengths": {0: "batch_size"},
|
||||
}
|
||||
|
||||
if vocoder is None:
|
||||
dynamic_axes.update(
|
||||
{
|
||||
"mel": {0: "batch_size", 2: "time"},
|
||||
"mel_lengths": {0: "batch_size"},
|
||||
}
|
||||
)
|
||||
else:
|
||||
print("Embedding the vocoder in the ONNX graph")
|
||||
dynamic_axes.update(
|
||||
{
|
||||
"wav": {0: "batch_size", 1: "time"},
|
||||
"wav_lengths": {0: "batch_size"},
|
||||
}
|
||||
)
|
||||
|
||||
if is_multi_speaker:
|
||||
dynamic_axes["spks"] = {0: "batch_size"}
|
||||
|
||||
# Create the output directory (if not exists)
|
||||
Path(args.output).parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
model.to_onnx(
|
||||
args.output,
|
||||
dummy_input,
|
||||
input_names=input_names,
|
||||
output_names=output_names,
|
||||
dynamic_axes=dynamic_axes,
|
||||
opset_version=args.opset,
|
||||
export_params=True,
|
||||
do_constant_folding=True,
|
||||
)
|
||||
print(f"[🍵] ONNX model exported to {args.output}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
168
matcha/onnx/infer.py
Normal file
168
matcha/onnx/infer.py
Normal file
@@ -0,0 +1,168 @@
|
||||
import argparse
|
||||
import os
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
from time import perf_counter
|
||||
|
||||
import numpy as np
|
||||
import onnxruntime as ort
|
||||
import soundfile as sf
|
||||
import torch
|
||||
|
||||
from matcha.cli import plot_spectrogram_to_numpy, process_text
|
||||
|
||||
|
||||
def validate_args(args):
|
||||
assert (
|
||||
args.text or args.file
|
||||
), "Either text or file must be provided Matcha-T(ea)TTS need sometext to whisk the waveforms."
|
||||
assert args.temperature >= 0, "Sampling temperature cannot be negative"
|
||||
assert args.speaking_rate >= 0, "Speaking rate must be greater than 0"
|
||||
return args
|
||||
|
||||
|
||||
def write_wavs(model, inputs, output_dir, external_vocoder=None):
|
||||
if external_vocoder is None:
|
||||
print("The provided model has the vocoder embedded in the graph.\nGenerating waveform directly")
|
||||
t0 = perf_counter()
|
||||
wavs, wav_lengths = model.run(None, inputs)
|
||||
infer_secs = perf_counter() - t0
|
||||
mel_infer_secs = vocoder_infer_secs = None
|
||||
else:
|
||||
print("[🍵] Generating mel using Matcha")
|
||||
mel_t0 = perf_counter()
|
||||
mels, mel_lengths = model.run(None, inputs)
|
||||
mel_infer_secs = perf_counter() - mel_t0
|
||||
print("Generating waveform from mel using external vocoder")
|
||||
vocoder_inputs = {external_vocoder.get_inputs()[0].name: mels}
|
||||
vocoder_t0 = perf_counter()
|
||||
wavs = external_vocoder.run(None, vocoder_inputs)[0]
|
||||
vocoder_infer_secs = perf_counter() - vocoder_t0
|
||||
wavs = wavs.squeeze(1)
|
||||
wav_lengths = mel_lengths * 256
|
||||
infer_secs = mel_infer_secs + vocoder_infer_secs
|
||||
|
||||
output_dir = Path(output_dir)
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
for i, (wav, wav_length) in enumerate(zip(wavs, wav_lengths)):
|
||||
output_filename = output_dir.joinpath(f"output_{i + 1}.wav")
|
||||
audio = wav[:wav_length]
|
||||
print(f"Writing audio to {output_filename}")
|
||||
sf.write(output_filename, audio, 22050, "PCM_24")
|
||||
|
||||
wav_secs = wav_lengths.sum() / 22050
|
||||
print(f"Inference seconds: {infer_secs}")
|
||||
print(f"Generated wav seconds: {wav_secs}")
|
||||
rtf = infer_secs / wav_secs
|
||||
if mel_infer_secs is not None:
|
||||
mel_rtf = mel_infer_secs / wav_secs
|
||||
print(f"Matcha RTF: {mel_rtf}")
|
||||
if vocoder_infer_secs is not None:
|
||||
vocoder_rtf = vocoder_infer_secs / wav_secs
|
||||
print(f"Vocoder RTF: {vocoder_rtf}")
|
||||
print(f"Overall RTF: {rtf}")
|
||||
|
||||
|
||||
def write_mels(model, inputs, output_dir):
|
||||
t0 = perf_counter()
|
||||
mels, mel_lengths = model.run(None, inputs)
|
||||
infer_secs = perf_counter() - t0
|
||||
|
||||
output_dir = Path(output_dir)
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
for i, mel in enumerate(mels):
|
||||
output_stem = output_dir.joinpath(f"output_{i + 1}")
|
||||
plot_spectrogram_to_numpy(mel.squeeze(), output_stem.with_suffix(".png"))
|
||||
np.save(output_stem.with_suffix(".numpy"), mel)
|
||||
|
||||
wav_secs = (mel_lengths * 256).sum() / 22050
|
||||
print(f"Inference seconds: {infer_secs}")
|
||||
print(f"Generated wav seconds: {wav_secs}")
|
||||
rtf = infer_secs / wav_secs
|
||||
print(f"RTF: {rtf}")
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description=" 🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching"
|
||||
)
|
||||
parser.add_argument(
|
||||
"model",
|
||||
type=str,
|
||||
help="ONNX model to use",
|
||||
)
|
||||
parser.add_argument("--vocoder", type=str, default=None, help="Vocoder to use (defaults to None)")
|
||||
parser.add_argument("--text", type=str, default=None, help="Text to synthesize")
|
||||
parser.add_argument("--file", type=str, default=None, help="Text file to synthesize")
|
||||
parser.add_argument("--spk", type=int, default=None, help="Speaker ID")
|
||||
parser.add_argument(
|
||||
"--temperature",
|
||||
type=float,
|
||||
default=0.667,
|
||||
help="Variance of the x0 noise (default: 0.667)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--speaking-rate",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="change the speaking rate, a higher value means slower speaking rate (default: 1.0)",
|
||||
)
|
||||
parser.add_argument("--gpu", action="store_true", help="Use CPU for inference (default: use GPU if available)")
|
||||
parser.add_argument(
|
||||
"--output-dir",
|
||||
type=str,
|
||||
default=os.getcwd(),
|
||||
help="Output folder to save results (default: current dir)",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
args = validate_args(args)
|
||||
|
||||
if args.gpu:
|
||||
providers = ["GPUExecutionProvider"]
|
||||
else:
|
||||
providers = ["CPUExecutionProvider"]
|
||||
model = ort.InferenceSession(args.model, providers=providers)
|
||||
|
||||
model_inputs = model.get_inputs()
|
||||
model_outputs = list(model.get_outputs())
|
||||
|
||||
if args.text:
|
||||
text_lines = args.text.splitlines()
|
||||
else:
|
||||
with open(args.file, encoding="utf-8") as file:
|
||||
text_lines = file.read().splitlines()
|
||||
|
||||
processed_lines = [process_text(0, line, "cpu") for line in text_lines]
|
||||
x = [line["x"].squeeze() for line in processed_lines]
|
||||
# Pad
|
||||
x = torch.nn.utils.rnn.pad_sequence(x, batch_first=True)
|
||||
x = x.detach().cpu().numpy()
|
||||
x_lengths = np.array([line["x_lengths"].item() for line in processed_lines], dtype=np.int64)
|
||||
inputs = {
|
||||
"x": x,
|
||||
"x_lengths": x_lengths,
|
||||
"scales": np.array([args.temperature, args.speaking_rate], dtype=np.float32),
|
||||
}
|
||||
is_multi_speaker = len(model_inputs) == 4
|
||||
if is_multi_speaker:
|
||||
if args.spk is None:
|
||||
args.spk = 0
|
||||
warn = "[!] Speaker ID not provided! Using speaker ID 0"
|
||||
warnings.warn(warn, UserWarning)
|
||||
inputs["spks"] = np.repeat(args.spk, x.shape[0]).astype(np.int64)
|
||||
|
||||
has_vocoder_embedded = model_outputs[0].name == "wav"
|
||||
if has_vocoder_embedded:
|
||||
write_wavs(model, inputs, args.output_dir)
|
||||
elif args.vocoder:
|
||||
external_vocoder = ort.InferenceSession(args.vocoder, providers=providers)
|
||||
write_wavs(model, inputs, args.output_dir, external_vocoder=external_vocoder)
|
||||
else:
|
||||
warn = "[!] A vocoder is not embedded in the graph nor an external vocoder is provided. The mel output will be written as numpy arrays to `*.npy` files in the output directory"
|
||||
warnings.warn(warn, UserWarning)
|
||||
write_mels(model, inputs, args.output_dir)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -7,15 +7,17 @@ import torch
|
||||
def sequence_mask(length, max_length=None):
|
||||
if max_length is None:
|
||||
max_length = length.max()
|
||||
x = torch.arange(int(max_length), dtype=length.dtype, device=length.device)
|
||||
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
||||
return x.unsqueeze(0) < length.unsqueeze(1)
|
||||
|
||||
|
||||
def fix_len_compatibility(length, num_downsamplings_in_unet=2):
|
||||
while True:
|
||||
if length % (2**num_downsamplings_in_unet) == 0:
|
||||
return length
|
||||
length += 1
|
||||
factor = torch.scalar_tensor(2).pow(num_downsamplings_in_unet)
|
||||
length = (length / factor).ceil() * factor
|
||||
if not torch.onnx.is_in_onnx_export():
|
||||
return length.int().item()
|
||||
else:
|
||||
return length
|
||||
|
||||
|
||||
def convert_pad_shape(pad_shape):
|
||||
|
||||
Reference in New Issue
Block a user