mirror of
https://github.com/shivammehta25/Matcha-TTS.git
synced 2026-02-05 18:29:19 +08:00
Adding multispeaker model in UI
This commit is contained in:
2
Makefile
2
Makefile
@@ -17,7 +17,7 @@ create-package: ## Create wheel and tar gz
|
|||||||
rm -rf dist/
|
rm -rf dist/
|
||||||
python setup.py bdist_wheel --plat-name=manylinux1_x86_64
|
python setup.py bdist_wheel --plat-name=manylinux1_x86_64
|
||||||
python setup.py sdist
|
python setup.py sdist
|
||||||
python -m twine upload dist/* --verbose
|
python -m twine upload dist/* --verbose --skip-existing
|
||||||
|
|
||||||
format: ## Run pre-commit hooks
|
format: ## Run pre-commit hooks
|
||||||
pre-commit run -a
|
pre-commit run -a
|
||||||
|
|||||||
@@ -7,8 +7,8 @@
|
|||||||
task_name: "debug"
|
task_name: "debug"
|
||||||
|
|
||||||
# disable callbacks and loggers during debugging
|
# disable callbacks and loggers during debugging
|
||||||
callbacks: null
|
# callbacks: null
|
||||||
logger: null
|
# logger: null
|
||||||
|
|
||||||
extras:
|
extras:
|
||||||
ignore_warnings: False
|
ignore_warnings: False
|
||||||
|
|||||||
@@ -7,6 +7,9 @@ defaults:
|
|||||||
|
|
||||||
trainer:
|
trainer:
|
||||||
max_epochs: 1
|
max_epochs: 1
|
||||||
profiler: "simple"
|
# profiler: "simple"
|
||||||
# profiler: "advanced"
|
profiler: "advanced"
|
||||||
# profiler: "pytorch"
|
# profiler: "pytorch"
|
||||||
|
accelerator: gpu
|
||||||
|
|
||||||
|
limit_train_batches: 0.02
|
||||||
|
|||||||
159
matcha/app.py
159
matcha/app.py
@@ -22,20 +22,64 @@ LOCATION = Path(get_user_data_dir())
|
|||||||
|
|
||||||
args = Namespace(
|
args = Namespace(
|
||||||
cpu=False,
|
cpu=False,
|
||||||
model="matcha_ljspeech",
|
model="matcha_vctk",
|
||||||
vocoder="hifigan_T2_v1",
|
vocoder="hifigan_univ_v1",
|
||||||
spk=None,
|
spk=0,
|
||||||
)
|
)
|
||||||
|
|
||||||
MATCHA_TTS_LOC = LOCATION / f"{args.model}.ckpt"
|
CURRENTLY_LOADED_MODEL = args.model
|
||||||
VOCODER_LOC = LOCATION / f"{args.vocoder}"
|
|
||||||
|
MATCHA_TTS_LOC = lambda x: LOCATION / f"{x}.ckpt" # noqa: E731
|
||||||
|
VOCODER_LOC = lambda x: LOCATION / f"{x}" # noqa: E731
|
||||||
LOGO_URL = "https://shivammehta25.github.io/Matcha-TTS/images/logo.png"
|
LOGO_URL = "https://shivammehta25.github.io/Matcha-TTS/images/logo.png"
|
||||||
assert_model_downloaded(MATCHA_TTS_LOC, MATCHA_URLS[args.model])
|
RADIO_OPTIONS = {
|
||||||
assert_model_downloaded(VOCODER_LOC, VOCODER_URLS[args.vocoder])
|
"Multi Speaker (VCTK)": {
|
||||||
|
"model": "matcha_vctk",
|
||||||
|
"vocoder": "hifigan_univ_v1",
|
||||||
|
},
|
||||||
|
"Single Speaker (LJ Speech)": {
|
||||||
|
"model": "matcha_ljspeech",
|
||||||
|
"vocoder": "hifigan_T2_v1",
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
# Ensure all the required models are downloaded
|
||||||
|
assert_model_downloaded(MATCHA_TTS_LOC("matcha_ljspeech"), MATCHA_URLS["matcha_ljspeech"])
|
||||||
|
assert_model_downloaded(VOCODER_LOC("hifigan_T2_v1"), VOCODER_URLS["hifigan_T2_v1"])
|
||||||
|
assert_model_downloaded(MATCHA_TTS_LOC("matcha_vctk"), MATCHA_URLS["matcha_vctk"])
|
||||||
|
assert_model_downloaded(VOCODER_LOC("hifigan_univ_v1"), VOCODER_URLS["hifigan_univ_v1"])
|
||||||
|
|
||||||
device = get_device(args)
|
device = get_device(args)
|
||||||
|
|
||||||
model = load_matcha(args.model, MATCHA_TTS_LOC, device)
|
# Load default model
|
||||||
vocoder, denoiser = load_vocoder(args.vocoder, VOCODER_LOC, device)
|
model = load_matcha(args.model, MATCHA_TTS_LOC(args.model), device)
|
||||||
|
vocoder, denoiser = load_vocoder(args.vocoder, VOCODER_LOC(args.vocoder), device)
|
||||||
|
|
||||||
|
|
||||||
|
def load_model(model_name, vocoder_name):
|
||||||
|
model = load_matcha(model_name, MATCHA_TTS_LOC(model_name), device)
|
||||||
|
vocoder, denoiser = load_vocoder(vocoder_name, VOCODER_LOC(vocoder_name), device)
|
||||||
|
return model, vocoder, denoiser
|
||||||
|
|
||||||
|
|
||||||
|
def load_model_ui(model_type, textbox):
|
||||||
|
model_name, vocoder_name = RADIO_OPTIONS[model_type]["model"], RADIO_OPTIONS[model_type]["vocoder"]
|
||||||
|
|
||||||
|
global model, vocoder, denoiser, CURRENTLY_LOADED_MODEL # pylint: disable=global-statement
|
||||||
|
if CURRENTLY_LOADED_MODEL != model_name:
|
||||||
|
model, vocoder, denoiser = load_model(model_name, vocoder_name)
|
||||||
|
CURRENTLY_LOADED_MODEL = model_name
|
||||||
|
|
||||||
|
if model_name == "matcha_ljspeech":
|
||||||
|
spk_slider = gr.update(visible=False, value=-1)
|
||||||
|
single_speaker_examples = gr.update(visible=True)
|
||||||
|
multi_speaker_examples = gr.update(visible=False)
|
||||||
|
else:
|
||||||
|
spk_slider = gr.update(visible=True, value=0)
|
||||||
|
single_speaker_examples = gr.update(visible=False)
|
||||||
|
multi_speaker_examples = gr.update(visible=True)
|
||||||
|
|
||||||
|
return textbox, gr.update(interactive=True), spk_slider, single_speaker_examples, multi_speaker_examples
|
||||||
|
|
||||||
|
|
||||||
@torch.inference_mode()
|
@torch.inference_mode()
|
||||||
@@ -45,13 +89,14 @@ def process_text_gradio(text):
|
|||||||
|
|
||||||
|
|
||||||
@torch.inference_mode()
|
@torch.inference_mode()
|
||||||
def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale):
|
def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale, spk):
|
||||||
|
spk = torch.tensor([spk], device=device, dtype=torch.long) if spk >= 0 else None
|
||||||
output = model.synthesise(
|
output = model.synthesise(
|
||||||
text,
|
text,
|
||||||
text_length,
|
text_length,
|
||||||
n_timesteps=n_timesteps,
|
n_timesteps=n_timesteps,
|
||||||
temperature=temperature,
|
temperature=temperature,
|
||||||
spks=args.spk,
|
spks=spk,
|
||||||
length_scale=length_scale,
|
length_scale=length_scale,
|
||||||
)
|
)
|
||||||
output["waveform"] = to_waveform(output["mel"], vocoder, denoiser)
|
output["waveform"] = to_waveform(output["mel"], vocoder, denoiser)
|
||||||
@@ -61,9 +106,27 @@ def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale):
|
|||||||
return fp.name, plot_tensor(output["mel"].squeeze().cpu().numpy())
|
return fp.name, plot_tensor(output["mel"].squeeze().cpu().numpy())
|
||||||
|
|
||||||
|
|
||||||
def run_full_synthesis(text, n_timesteps, mel_temp, length_scale):
|
def multispeaker_example_cacher(text, n_timesteps, mel_temp, length_scale, spk):
|
||||||
|
global CURRENTLY_LOADED_MODEL # pylint: disable=global-statement
|
||||||
|
if CURRENTLY_LOADED_MODEL != "matcha_vctk":
|
||||||
|
global model, vocoder, denoiser # pylint: disable=global-statement
|
||||||
|
model, vocoder, denoiser = load_model("matcha_vctk", "hifigan_univ_v1")
|
||||||
|
CURRENTLY_LOADED_MODEL = "matcha_vctk"
|
||||||
|
|
||||||
phones, text, text_lengths = process_text_gradio(text)
|
phones, text, text_lengths = process_text_gradio(text)
|
||||||
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale)
|
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)
|
||||||
|
return phones, audio, mel_spectrogram
|
||||||
|
|
||||||
|
|
||||||
|
def ljspeech_example_cacher(text, n_timesteps, mel_temp, length_scale, spk=-1):
|
||||||
|
global CURRENTLY_LOADED_MODEL # pylint: disable=global-statement
|
||||||
|
if CURRENTLY_LOADED_MODEL != "matcha_ljspeech":
|
||||||
|
global model, vocoder, denoiser # pylint: disable=global-statement
|
||||||
|
model, vocoder, denoiser = load_model("matcha_ljspeech", "hifigan_T2_v1")
|
||||||
|
CURRENTLY_LOADED_MODEL = "matcha_ljspeech"
|
||||||
|
|
||||||
|
phones, text, text_lengths = process_text_gradio(text)
|
||||||
|
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)
|
||||||
return phones, audio, mel_spectrogram
|
return phones, audio, mel_spectrogram
|
||||||
|
|
||||||
|
|
||||||
@@ -95,10 +158,18 @@ def main():
|
|||||||
gr.Image(LOGO_URL, label="Matcha-TTS logo", height=150, width=150, scale=1, show_label=False)
|
gr.Image(LOGO_URL, label="Matcha-TTS logo", height=150, width=150, scale=1, show_label=False)
|
||||||
|
|
||||||
with gr.Box():
|
with gr.Box():
|
||||||
|
radio_options = list(RADIO_OPTIONS.keys())
|
||||||
|
model_type = gr.Radio(
|
||||||
|
radio_options, value=radio_options[0], label="Choose a Model", interactive=True, container=False
|
||||||
|
)
|
||||||
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
gr.Markdown("# Text Input")
|
gr.Markdown("# Text Input")
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
text = gr.Textbox(value="", lines=2, label="Text to synthesise")
|
text = gr.Textbox(value="", lines=2, label="Text to synthesise", scale=3)
|
||||||
|
spk_slider = gr.Slider(
|
||||||
|
minimum=0, maximum=108, step=1, value=args.spk, label="Speaker ID", interactive=True, scale=1
|
||||||
|
)
|
||||||
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
gr.Markdown("### Hyper parameters")
|
gr.Markdown("### Hyper parameters")
|
||||||
@@ -142,7 +213,7 @@ def main():
|
|||||||
# with gr.Row():
|
# with gr.Row():
|
||||||
audio = gr.Audio(interactive=False, label="Audio")
|
audio = gr.Audio(interactive=False, label="Audio")
|
||||||
|
|
||||||
with gr.Row():
|
with gr.Row(visible=False) as example_row_lj_speech:
|
||||||
examples = gr.Examples( # pylint: disable=unused-variable
|
examples = gr.Examples( # pylint: disable=unused-variable
|
||||||
examples=[
|
examples=[
|
||||||
[
|
[
|
||||||
@@ -188,12 +259,64 @@ def main():
|
|||||||
1.0,
|
1.0,
|
||||||
],
|
],
|
||||||
],
|
],
|
||||||
fn=run_full_synthesis,
|
fn=ljspeech_example_cacher,
|
||||||
inputs=[text, n_timesteps, mel_temp, length_scale],
|
inputs=[text, n_timesteps, mel_temp, length_scale],
|
||||||
outputs=[phonetised_text, audio, mel_spectrogram],
|
outputs=[phonetised_text, audio, mel_spectrogram],
|
||||||
cache_examples=True,
|
cache_examples=True,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
with gr.Row() as example_row_multispeaker:
|
||||||
|
multi_speaker_examples = gr.Examples( # pylint: disable=unused-variable
|
||||||
|
examples=[
|
||||||
|
[
|
||||||
|
"Hello everyone! I am speaker 0 and I am here to tell you that Matcha-TTS is amazing!",
|
||||||
|
10,
|
||||||
|
0.677,
|
||||||
|
1.0,
|
||||||
|
0,
|
||||||
|
],
|
||||||
|
[
|
||||||
|
"Hello everyone! I am speaker 13 and I am here to tell you that Matcha-TTS is amazing!",
|
||||||
|
50,
|
||||||
|
0.677,
|
||||||
|
1.0,
|
||||||
|
13,
|
||||||
|
],
|
||||||
|
[
|
||||||
|
"Hello everyone! I am speaker 16 and I am here to tell you that Matcha-TTS is amazing!",
|
||||||
|
10,
|
||||||
|
0.677,
|
||||||
|
1.0,
|
||||||
|
16,
|
||||||
|
],
|
||||||
|
[
|
||||||
|
"Hello everyone! I am speaker 45 and I am here to tell you that Matcha-TTS is amazing!",
|
||||||
|
50,
|
||||||
|
0.677,
|
||||||
|
1.0,
|
||||||
|
45,
|
||||||
|
],
|
||||||
|
[
|
||||||
|
"Hello everyone! I am speaker 58 and I am here to tell you that Matcha-TTS is amazing!",
|
||||||
|
4,
|
||||||
|
0.677,
|
||||||
|
1.0,
|
||||||
|
58,
|
||||||
|
],
|
||||||
|
],
|
||||||
|
fn=multispeaker_example_cacher,
|
||||||
|
inputs=[text, n_timesteps, mel_temp, length_scale, spk_slider],
|
||||||
|
outputs=[phonetised_text, audio, mel_spectrogram],
|
||||||
|
cache_examples=True,
|
||||||
|
label="Multi Speaker Examples",
|
||||||
|
)
|
||||||
|
|
||||||
|
model_type.change(lambda x: gr.update(interactive=False), inputs=[synth_btn], outputs=[synth_btn]).then(
|
||||||
|
load_model_ui,
|
||||||
|
inputs=[model_type, text],
|
||||||
|
outputs=[text, synth_btn, spk_slider, example_row_lj_speech, example_row_multispeaker],
|
||||||
|
)
|
||||||
|
|
||||||
synth_btn.click(
|
synth_btn.click(
|
||||||
fn=process_text_gradio,
|
fn=process_text_gradio,
|
||||||
inputs=[
|
inputs=[
|
||||||
@@ -204,11 +327,11 @@ def main():
|
|||||||
queue=True,
|
queue=True,
|
||||||
).then(
|
).then(
|
||||||
fn=synthesise_mel,
|
fn=synthesise_mel,
|
||||||
inputs=[processed_text, processed_text_len, n_timesteps, mel_temp, length_scale],
|
inputs=[processed_text, processed_text_len, n_timesteps, mel_temp, length_scale, spk_slider],
|
||||||
outputs=[audio, mel_spectrogram],
|
outputs=[audio, mel_spectrogram],
|
||||||
)
|
)
|
||||||
|
|
||||||
demo.queue(concurrency_count=5).launch(share=True)
|
demo.queue().launch(debug=True)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|||||||
Reference in New Issue
Block a user