mirror of
https://github.com/shivammehta25/Matcha-TTS.git
synced 2026-02-04 17:59:19 +08:00
Adding multispeaker model in UI
This commit is contained in:
159
matcha/app.py
159
matcha/app.py
@@ -22,20 +22,64 @@ LOCATION = Path(get_user_data_dir())
|
||||
|
||||
args = Namespace(
|
||||
cpu=False,
|
||||
model="matcha_ljspeech",
|
||||
vocoder="hifigan_T2_v1",
|
||||
spk=None,
|
||||
model="matcha_vctk",
|
||||
vocoder="hifigan_univ_v1",
|
||||
spk=0,
|
||||
)
|
||||
|
||||
MATCHA_TTS_LOC = LOCATION / f"{args.model}.ckpt"
|
||||
VOCODER_LOC = LOCATION / f"{args.vocoder}"
|
||||
CURRENTLY_LOADED_MODEL = args.model
|
||||
|
||||
MATCHA_TTS_LOC = lambda x: LOCATION / f"{x}.ckpt" # noqa: E731
|
||||
VOCODER_LOC = lambda x: LOCATION / f"{x}" # noqa: E731
|
||||
LOGO_URL = "https://shivammehta25.github.io/Matcha-TTS/images/logo.png"
|
||||
assert_model_downloaded(MATCHA_TTS_LOC, MATCHA_URLS[args.model])
|
||||
assert_model_downloaded(VOCODER_LOC, VOCODER_URLS[args.vocoder])
|
||||
RADIO_OPTIONS = {
|
||||
"Multi Speaker (VCTK)": {
|
||||
"model": "matcha_vctk",
|
||||
"vocoder": "hifigan_univ_v1",
|
||||
},
|
||||
"Single Speaker (LJ Speech)": {
|
||||
"model": "matcha_ljspeech",
|
||||
"vocoder": "hifigan_T2_v1",
|
||||
},
|
||||
}
|
||||
|
||||
# Ensure all the required models are downloaded
|
||||
assert_model_downloaded(MATCHA_TTS_LOC("matcha_ljspeech"), MATCHA_URLS["matcha_ljspeech"])
|
||||
assert_model_downloaded(VOCODER_LOC("hifigan_T2_v1"), VOCODER_URLS["hifigan_T2_v1"])
|
||||
assert_model_downloaded(MATCHA_TTS_LOC("matcha_vctk"), MATCHA_URLS["matcha_vctk"])
|
||||
assert_model_downloaded(VOCODER_LOC("hifigan_univ_v1"), VOCODER_URLS["hifigan_univ_v1"])
|
||||
|
||||
device = get_device(args)
|
||||
|
||||
model = load_matcha(args.model, MATCHA_TTS_LOC, device)
|
||||
vocoder, denoiser = load_vocoder(args.vocoder, VOCODER_LOC, device)
|
||||
# Load default model
|
||||
model = load_matcha(args.model, MATCHA_TTS_LOC(args.model), device)
|
||||
vocoder, denoiser = load_vocoder(args.vocoder, VOCODER_LOC(args.vocoder), device)
|
||||
|
||||
|
||||
def load_model(model_name, vocoder_name):
|
||||
model = load_matcha(model_name, MATCHA_TTS_LOC(model_name), device)
|
||||
vocoder, denoiser = load_vocoder(vocoder_name, VOCODER_LOC(vocoder_name), device)
|
||||
return model, vocoder, denoiser
|
||||
|
||||
|
||||
def load_model_ui(model_type, textbox):
|
||||
model_name, vocoder_name = RADIO_OPTIONS[model_type]["model"], RADIO_OPTIONS[model_type]["vocoder"]
|
||||
|
||||
global model, vocoder, denoiser, CURRENTLY_LOADED_MODEL # pylint: disable=global-statement
|
||||
if CURRENTLY_LOADED_MODEL != model_name:
|
||||
model, vocoder, denoiser = load_model(model_name, vocoder_name)
|
||||
CURRENTLY_LOADED_MODEL = model_name
|
||||
|
||||
if model_name == "matcha_ljspeech":
|
||||
spk_slider = gr.update(visible=False, value=-1)
|
||||
single_speaker_examples = gr.update(visible=True)
|
||||
multi_speaker_examples = gr.update(visible=False)
|
||||
else:
|
||||
spk_slider = gr.update(visible=True, value=0)
|
||||
single_speaker_examples = gr.update(visible=False)
|
||||
multi_speaker_examples = gr.update(visible=True)
|
||||
|
||||
return textbox, gr.update(interactive=True), spk_slider, single_speaker_examples, multi_speaker_examples
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
@@ -45,13 +89,14 @@ def process_text_gradio(text):
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale):
|
||||
def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale, spk):
|
||||
spk = torch.tensor([spk], device=device, dtype=torch.long) if spk >= 0 else None
|
||||
output = model.synthesise(
|
||||
text,
|
||||
text_length,
|
||||
n_timesteps=n_timesteps,
|
||||
temperature=temperature,
|
||||
spks=args.spk,
|
||||
spks=spk,
|
||||
length_scale=length_scale,
|
||||
)
|
||||
output["waveform"] = to_waveform(output["mel"], vocoder, denoiser)
|
||||
@@ -61,9 +106,27 @@ def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale):
|
||||
return fp.name, plot_tensor(output["mel"].squeeze().cpu().numpy())
|
||||
|
||||
|
||||
def run_full_synthesis(text, n_timesteps, mel_temp, length_scale):
|
||||
def multispeaker_example_cacher(text, n_timesteps, mel_temp, length_scale, spk):
|
||||
global CURRENTLY_LOADED_MODEL # pylint: disable=global-statement
|
||||
if CURRENTLY_LOADED_MODEL != "matcha_vctk":
|
||||
global model, vocoder, denoiser # pylint: disable=global-statement
|
||||
model, vocoder, denoiser = load_model("matcha_vctk", "hifigan_univ_v1")
|
||||
CURRENTLY_LOADED_MODEL = "matcha_vctk"
|
||||
|
||||
phones, text, text_lengths = process_text_gradio(text)
|
||||
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale)
|
||||
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)
|
||||
return phones, audio, mel_spectrogram
|
||||
|
||||
|
||||
def ljspeech_example_cacher(text, n_timesteps, mel_temp, length_scale, spk=-1):
|
||||
global CURRENTLY_LOADED_MODEL # pylint: disable=global-statement
|
||||
if CURRENTLY_LOADED_MODEL != "matcha_ljspeech":
|
||||
global model, vocoder, denoiser # pylint: disable=global-statement
|
||||
model, vocoder, denoiser = load_model("matcha_ljspeech", "hifigan_T2_v1")
|
||||
CURRENTLY_LOADED_MODEL = "matcha_ljspeech"
|
||||
|
||||
phones, text, text_lengths = process_text_gradio(text)
|
||||
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)
|
||||
return phones, audio, mel_spectrogram
|
||||
|
||||
|
||||
@@ -95,10 +158,18 @@ def main():
|
||||
gr.Image(LOGO_URL, label="Matcha-TTS logo", height=150, width=150, scale=1, show_label=False)
|
||||
|
||||
with gr.Box():
|
||||
radio_options = list(RADIO_OPTIONS.keys())
|
||||
model_type = gr.Radio(
|
||||
radio_options, value=radio_options[0], label="Choose a Model", interactive=True, container=False
|
||||
)
|
||||
|
||||
with gr.Row():
|
||||
gr.Markdown("# Text Input")
|
||||
with gr.Row():
|
||||
text = gr.Textbox(value="", lines=2, label="Text to synthesise")
|
||||
text = gr.Textbox(value="", lines=2, label="Text to synthesise", scale=3)
|
||||
spk_slider = gr.Slider(
|
||||
minimum=0, maximum=108, step=1, value=args.spk, label="Speaker ID", interactive=True, scale=1
|
||||
)
|
||||
|
||||
with gr.Row():
|
||||
gr.Markdown("### Hyper parameters")
|
||||
@@ -142,7 +213,7 @@ def main():
|
||||
# with gr.Row():
|
||||
audio = gr.Audio(interactive=False, label="Audio")
|
||||
|
||||
with gr.Row():
|
||||
with gr.Row(visible=False) as example_row_lj_speech:
|
||||
examples = gr.Examples( # pylint: disable=unused-variable
|
||||
examples=[
|
||||
[
|
||||
@@ -188,12 +259,64 @@ def main():
|
||||
1.0,
|
||||
],
|
||||
],
|
||||
fn=run_full_synthesis,
|
||||
fn=ljspeech_example_cacher,
|
||||
inputs=[text, n_timesteps, mel_temp, length_scale],
|
||||
outputs=[phonetised_text, audio, mel_spectrogram],
|
||||
cache_examples=True,
|
||||
)
|
||||
|
||||
with gr.Row() as example_row_multispeaker:
|
||||
multi_speaker_examples = gr.Examples( # pylint: disable=unused-variable
|
||||
examples=[
|
||||
[
|
||||
"Hello everyone! I am speaker 0 and I am here to tell you that Matcha-TTS is amazing!",
|
||||
10,
|
||||
0.677,
|
||||
1.0,
|
||||
0,
|
||||
],
|
||||
[
|
||||
"Hello everyone! I am speaker 13 and I am here to tell you that Matcha-TTS is amazing!",
|
||||
50,
|
||||
0.677,
|
||||
1.0,
|
||||
13,
|
||||
],
|
||||
[
|
||||
"Hello everyone! I am speaker 16 and I am here to tell you that Matcha-TTS is amazing!",
|
||||
10,
|
||||
0.677,
|
||||
1.0,
|
||||
16,
|
||||
],
|
||||
[
|
||||
"Hello everyone! I am speaker 45 and I am here to tell you that Matcha-TTS is amazing!",
|
||||
50,
|
||||
0.677,
|
||||
1.0,
|
||||
45,
|
||||
],
|
||||
[
|
||||
"Hello everyone! I am speaker 58 and I am here to tell you that Matcha-TTS is amazing!",
|
||||
4,
|
||||
0.677,
|
||||
1.0,
|
||||
58,
|
||||
],
|
||||
],
|
||||
fn=multispeaker_example_cacher,
|
||||
inputs=[text, n_timesteps, mel_temp, length_scale, spk_slider],
|
||||
outputs=[phonetised_text, audio, mel_spectrogram],
|
||||
cache_examples=True,
|
||||
label="Multi Speaker Examples",
|
||||
)
|
||||
|
||||
model_type.change(lambda x: gr.update(interactive=False), inputs=[synth_btn], outputs=[synth_btn]).then(
|
||||
load_model_ui,
|
||||
inputs=[model_type, text],
|
||||
outputs=[text, synth_btn, spk_slider, example_row_lj_speech, example_row_multispeaker],
|
||||
)
|
||||
|
||||
synth_btn.click(
|
||||
fn=process_text_gradio,
|
||||
inputs=[
|
||||
@@ -204,11 +327,11 @@ def main():
|
||||
queue=True,
|
||||
).then(
|
||||
fn=synthesise_mel,
|
||||
inputs=[processed_text, processed_text_len, n_timesteps, mel_temp, length_scale],
|
||||
inputs=[processed_text, processed_text_len, n_timesteps, mel_temp, length_scale, spk_slider],
|
||||
outputs=[audio, mel_spectrogram],
|
||||
)
|
||||
|
||||
demo.queue(concurrency_count=5).launch(share=True)
|
||||
demo.queue().launch(debug=True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
Reference in New Issue
Block a user