Files
LAM_Audio2Expression/engines/hooks/evaluator.py
2025-04-17 23:14:24 +08:00

578 lines
26 KiB
Python

"""
The code is base on https://github.com/Pointcept/Pointcept
"""
import numpy as np
import torch
import torch.distributed as dist
from uuid import uuid4
import utils.comm as comm
from utils.misc import intersection_and_union_gpu
from .default import HookBase
from .builder import HOOKS
@HOOKS.register_module()
class ClsEvaluator(HookBase):
def after_epoch(self):
if self.trainer.cfg.evaluate:
self.eval()
def eval(self):
self.trainer.logger.info(">>>>>>>>>>>>>>>> Start Evaluation >>>>>>>>>>>>>>>>")
self.trainer.model.eval()
for i, input_dict in enumerate(self.trainer.val_loader):
for key in input_dict.keys():
if isinstance(input_dict[key], torch.Tensor):
input_dict[key] = input_dict[key].cuda(non_blocking=True)
with torch.no_grad():
output_dict = self.trainer.model(input_dict)
output = output_dict["cls_logits"]
loss = output_dict["loss"]
pred = output.max(1)[1]
label = input_dict["category"]
intersection, union, target = intersection_and_union_gpu(
pred,
label,
self.trainer.cfg.data.num_classes,
self.trainer.cfg.data.ignore_index,
)
if comm.get_world_size() > 1:
dist.all_reduce(intersection), dist.all_reduce(union), dist.all_reduce(
target
)
intersection, union, target = (
intersection.cpu().numpy(),
union.cpu().numpy(),
target.cpu().numpy(),
)
# Here there is no need to sync since sync happened in dist.all_reduce
self.trainer.storage.put_scalar("val_intersection", intersection)
self.trainer.storage.put_scalar("val_union", union)
self.trainer.storage.put_scalar("val_target", target)
self.trainer.storage.put_scalar("val_loss", loss.item())
self.trainer.logger.info(
"Test: [{iter}/{max_iter}] "
"Loss {loss:.4f} ".format(
iter=i + 1, max_iter=len(self.trainer.val_loader), loss=loss.item()
)
)
loss_avg = self.trainer.storage.history("val_loss").avg
intersection = self.trainer.storage.history("val_intersection").total
union = self.trainer.storage.history("val_union").total
target = self.trainer.storage.history("val_target").total
iou_class = intersection / (union + 1e-10)
acc_class = intersection / (target + 1e-10)
m_iou = np.mean(iou_class)
m_acc = np.mean(acc_class)
all_acc = sum(intersection) / (sum(target) + 1e-10)
self.trainer.logger.info(
"Val result: mIoU/mAcc/allAcc {:.4f}/{:.4f}/{:.4f}.".format(
m_iou, m_acc, all_acc
)
)
for i in range(self.trainer.cfg.data.num_classes):
self.trainer.logger.info(
"Class_{idx}-{name} Result: iou/accuracy {iou:.4f}/{accuracy:.4f}".format(
idx=i,
name=self.trainer.cfg.data.names[i],
iou=iou_class[i],
accuracy=acc_class[i],
)
)
current_epoch = self.trainer.epoch + 1
if self.trainer.writer is not None:
self.trainer.writer.add_scalar("val/loss", loss_avg, current_epoch)
self.trainer.writer.add_scalar("val/mIoU", m_iou, current_epoch)
self.trainer.writer.add_scalar("val/mAcc", m_acc, current_epoch)
self.trainer.writer.add_scalar("val/allAcc", all_acc, current_epoch)
self.trainer.logger.info("<<<<<<<<<<<<<<<<< End Evaluation <<<<<<<<<<<<<<<<<")
self.trainer.comm_info["current_metric_value"] = all_acc # save for saver
self.trainer.comm_info["current_metric_name"] = "allAcc" # save for saver
def after_train(self):
self.trainer.logger.info(
"Best {}: {:.4f}".format("allAcc", self.trainer.best_metric_value)
)
@HOOKS.register_module()
class SemSegEvaluator(HookBase):
def after_epoch(self):
if self.trainer.cfg.evaluate:
self.eval()
def eval(self):
self.trainer.logger.info(">>>>>>>>>>>>>>>> Start Evaluation >>>>>>>>>>>>>>>>")
self.trainer.model.eval()
for i, input_dict in enumerate(self.trainer.val_loader):
for key in input_dict.keys():
if isinstance(input_dict[key], torch.Tensor):
input_dict[key] = input_dict[key].cuda(non_blocking=True)
with torch.no_grad():
output_dict = self.trainer.model(input_dict)
output = output_dict["seg_logits"]
loss = output_dict["loss"]
pred = output.max(1)[1]
segment = input_dict["segment"]
if "origin_coord" in input_dict.keys():
idx, _ = pointops.knn_query(
1,
input_dict["coord"].float(),
input_dict["offset"].int(),
input_dict["origin_coord"].float(),
input_dict["origin_offset"].int(),
)
pred = pred[idx.flatten().long()]
segment = input_dict["origin_segment"]
intersection, union, target = intersection_and_union_gpu(
pred,
segment,
self.trainer.cfg.data.num_classes,
self.trainer.cfg.data.ignore_index,
)
if comm.get_world_size() > 1:
dist.all_reduce(intersection), dist.all_reduce(union), dist.all_reduce(
target
)
intersection, union, target = (
intersection.cpu().numpy(),
union.cpu().numpy(),
target.cpu().numpy(),
)
# Here there is no need to sync since sync happened in dist.all_reduce
self.trainer.storage.put_scalar("val_intersection", intersection)
self.trainer.storage.put_scalar("val_union", union)
self.trainer.storage.put_scalar("val_target", target)
self.trainer.storage.put_scalar("val_loss", loss.item())
info = "Test: [{iter}/{max_iter}] ".format(
iter=i + 1, max_iter=len(self.trainer.val_loader)
)
if "origin_coord" in input_dict.keys():
info = "Interp. " + info
self.trainer.logger.info(
info
+ "Loss {loss:.4f} ".format(
iter=i + 1, max_iter=len(self.trainer.val_loader), loss=loss.item()
)
)
loss_avg = self.trainer.storage.history("val_loss").avg
intersection = self.trainer.storage.history("val_intersection").total
union = self.trainer.storage.history("val_union").total
target = self.trainer.storage.history("val_target").total
iou_class = intersection / (union + 1e-10)
acc_class = intersection / (target + 1e-10)
m_iou = np.mean(iou_class)
m_acc = np.mean(acc_class)
all_acc = sum(intersection) / (sum(target) + 1e-10)
self.trainer.logger.info(
"Val result: mIoU/mAcc/allAcc {:.4f}/{:.4f}/{:.4f}.".format(
m_iou, m_acc, all_acc
)
)
for i in range(self.trainer.cfg.data.num_classes):
self.trainer.logger.info(
"Class_{idx}-{name} Result: iou/accuracy {iou:.4f}/{accuracy:.4f}".format(
idx=i,
name=self.trainer.cfg.data.names[i],
iou=iou_class[i],
accuracy=acc_class[i],
)
)
current_epoch = self.trainer.epoch + 1
if self.trainer.writer is not None:
self.trainer.writer.add_scalar("val/loss", loss_avg, current_epoch)
self.trainer.writer.add_scalar("val/mIoU", m_iou, current_epoch)
self.trainer.writer.add_scalar("val/mAcc", m_acc, current_epoch)
self.trainer.writer.add_scalar("val/allAcc", all_acc, current_epoch)
self.trainer.logger.info("<<<<<<<<<<<<<<<<< End Evaluation <<<<<<<<<<<<<<<<<")
self.trainer.comm_info["current_metric_value"] = m_iou # save for saver
self.trainer.comm_info["current_metric_name"] = "mIoU" # save for saver
def after_train(self):
self.trainer.logger.info(
"Best {}: {:.4f}".format("mIoU", self.trainer.best_metric_value)
)
@HOOKS.register_module()
class InsSegEvaluator(HookBase):
def __init__(self, segment_ignore_index=(-1,), instance_ignore_index=-1):
self.segment_ignore_index = segment_ignore_index
self.instance_ignore_index = instance_ignore_index
self.valid_class_names = None # update in before train
self.overlaps = np.append(np.arange(0.5, 0.95, 0.05), 0.25)
self.min_region_sizes = 100
self.distance_threshes = float("inf")
self.distance_confs = -float("inf")
def before_train(self):
self.valid_class_names = [
self.trainer.cfg.data.names[i]
for i in range(self.trainer.cfg.data.num_classes)
if i not in self.segment_ignore_index
]
def after_epoch(self):
if self.trainer.cfg.evaluate:
self.eval()
def associate_instances(self, pred, segment, instance):
segment = segment.cpu().numpy()
instance = instance.cpu().numpy()
void_mask = np.in1d(segment, self.segment_ignore_index)
assert (
pred["pred_classes"].shape[0]
== pred["pred_scores"].shape[0]
== pred["pred_masks"].shape[0]
)
assert pred["pred_masks"].shape[1] == segment.shape[0] == instance.shape[0]
# get gt instances
gt_instances = dict()
for i in range(self.trainer.cfg.data.num_classes):
if i not in self.segment_ignore_index:
gt_instances[self.trainer.cfg.data.names[i]] = []
instance_ids, idx, counts = np.unique(
instance, return_index=True, return_counts=True
)
segment_ids = segment[idx]
for i in range(len(instance_ids)):
if instance_ids[i] == self.instance_ignore_index:
continue
if segment_ids[i] in self.segment_ignore_index:
continue
gt_inst = dict()
gt_inst["instance_id"] = instance_ids[i]
gt_inst["segment_id"] = segment_ids[i]
gt_inst["dist_conf"] = 0.0
gt_inst["med_dist"] = -1.0
gt_inst["vert_count"] = counts[i]
gt_inst["matched_pred"] = []
gt_instances[self.trainer.cfg.data.names[segment_ids[i]]].append(gt_inst)
# get pred instances and associate with gt
pred_instances = dict()
for i in range(self.trainer.cfg.data.num_classes):
if i not in self.segment_ignore_index:
pred_instances[self.trainer.cfg.data.names[i]] = []
instance_id = 0
for i in range(len(pred["pred_classes"])):
if pred["pred_classes"][i] in self.segment_ignore_index:
continue
pred_inst = dict()
pred_inst["uuid"] = uuid4()
pred_inst["instance_id"] = instance_id
pred_inst["segment_id"] = pred["pred_classes"][i]
pred_inst["confidence"] = pred["pred_scores"][i]
pred_inst["mask"] = np.not_equal(pred["pred_masks"][i], 0)
pred_inst["vert_count"] = np.count_nonzero(pred_inst["mask"])
pred_inst["void_intersection"] = np.count_nonzero(
np.logical_and(void_mask, pred_inst["mask"])
)
if pred_inst["vert_count"] < self.min_region_sizes:
continue # skip if empty
segment_name = self.trainer.cfg.data.names[pred_inst["segment_id"]]
matched_gt = []
for gt_idx, gt_inst in enumerate(gt_instances[segment_name]):
intersection = np.count_nonzero(
np.logical_and(
instance == gt_inst["instance_id"], pred_inst["mask"]
)
)
if intersection > 0:
gt_inst_ = gt_inst.copy()
pred_inst_ = pred_inst.copy()
gt_inst_["intersection"] = intersection
pred_inst_["intersection"] = intersection
matched_gt.append(gt_inst_)
gt_inst["matched_pred"].append(pred_inst_)
pred_inst["matched_gt"] = matched_gt
pred_instances[segment_name].append(pred_inst)
instance_id += 1
return gt_instances, pred_instances
def evaluate_matches(self, scenes):
overlaps = self.overlaps
min_region_sizes = [self.min_region_sizes]
dist_threshes = [self.distance_threshes]
dist_confs = [self.distance_confs]
# results: class x overlap
ap_table = np.zeros(
(len(dist_threshes), len(self.valid_class_names), len(overlaps)), float
)
for di, (min_region_size, distance_thresh, distance_conf) in enumerate(
zip(min_region_sizes, dist_threshes, dist_confs)
):
for oi, overlap_th in enumerate(overlaps):
pred_visited = {}
for scene in scenes:
for _ in scene["pred"]:
for label_name in self.valid_class_names:
for p in scene["pred"][label_name]:
if "uuid" in p:
pred_visited[p["uuid"]] = False
for li, label_name in enumerate(self.valid_class_names):
y_true = np.empty(0)
y_score = np.empty(0)
hard_false_negatives = 0
has_gt = False
has_pred = False
for scene in scenes:
pred_instances = scene["pred"][label_name]
gt_instances = scene["gt"][label_name]
# filter groups in ground truth
gt_instances = [
gt
for gt in gt_instances
if gt["vert_count"] >= min_region_size
and gt["med_dist"] <= distance_thresh
and gt["dist_conf"] >= distance_conf
]
if gt_instances:
has_gt = True
if pred_instances:
has_pred = True
cur_true = np.ones(len(gt_instances))
cur_score = np.ones(len(gt_instances)) * (-float("inf"))
cur_match = np.zeros(len(gt_instances), dtype=bool)
# collect matches
for gti, gt in enumerate(gt_instances):
found_match = False
for pred in gt["matched_pred"]:
# greedy assignments
if pred_visited[pred["uuid"]]:
continue
overlap = float(pred["intersection"]) / (
gt["vert_count"]
+ pred["vert_count"]
- pred["intersection"]
)
if overlap > overlap_th:
confidence = pred["confidence"]
# if already have a prediction for this gt,
# the prediction with the lower score is automatically a false positive
if cur_match[gti]:
max_score = max(cur_score[gti], confidence)
min_score = min(cur_score[gti], confidence)
cur_score[gti] = max_score
# append false positive
cur_true = np.append(cur_true, 0)
cur_score = np.append(cur_score, min_score)
cur_match = np.append(cur_match, True)
# otherwise set score
else:
found_match = True
cur_match[gti] = True
cur_score[gti] = confidence
pred_visited[pred["uuid"]] = True
if not found_match:
hard_false_negatives += 1
# remove non-matched ground truth instances
cur_true = cur_true[cur_match]
cur_score = cur_score[cur_match]
# collect non-matched predictions as false positive
for pred in pred_instances:
found_gt = False
for gt in pred["matched_gt"]:
overlap = float(gt["intersection"]) / (
gt["vert_count"]
+ pred["vert_count"]
- gt["intersection"]
)
if overlap > overlap_th:
found_gt = True
break
if not found_gt:
num_ignore = pred["void_intersection"]
for gt in pred["matched_gt"]:
if gt["segment_id"] in self.segment_ignore_index:
num_ignore += gt["intersection"]
# small ground truth instances
if (
gt["vert_count"] < min_region_size
or gt["med_dist"] > distance_thresh
or gt["dist_conf"] < distance_conf
):
num_ignore += gt["intersection"]
proportion_ignore = (
float(num_ignore) / pred["vert_count"]
)
# if not ignored append false positive
if proportion_ignore <= overlap_th:
cur_true = np.append(cur_true, 0)
confidence = pred["confidence"]
cur_score = np.append(cur_score, confidence)
# append to overall results
y_true = np.append(y_true, cur_true)
y_score = np.append(y_score, cur_score)
# compute average precision
if has_gt and has_pred:
# compute precision recall curve first
# sorting and cumsum
score_arg_sort = np.argsort(y_score)
y_score_sorted = y_score[score_arg_sort]
y_true_sorted = y_true[score_arg_sort]
y_true_sorted_cumsum = np.cumsum(y_true_sorted)
# unique thresholds
(thresholds, unique_indices) = np.unique(
y_score_sorted, return_index=True
)
num_prec_recall = len(unique_indices) + 1
# prepare precision recall
num_examples = len(y_score_sorted)
# https://github.com/ScanNet/ScanNet/pull/26
# all predictions are non-matched but also all of them are ignored and not counted as FP
# y_true_sorted_cumsum is empty
# num_true_examples = y_true_sorted_cumsum[-1]
num_true_examples = (
y_true_sorted_cumsum[-1]
if len(y_true_sorted_cumsum) > 0
else 0
)
precision = np.zeros(num_prec_recall)
recall = np.zeros(num_prec_recall)
# deal with the first point
y_true_sorted_cumsum = np.append(y_true_sorted_cumsum, 0)
# deal with remaining
for idx_res, idx_scores in enumerate(unique_indices):
cumsum = y_true_sorted_cumsum[idx_scores - 1]
tp = num_true_examples - cumsum
fp = num_examples - idx_scores - tp
fn = cumsum + hard_false_negatives
p = float(tp) / (tp + fp)
r = float(tp) / (tp + fn)
precision[idx_res] = p
recall[idx_res] = r
# first point in curve is artificial
precision[-1] = 1.0
recall[-1] = 0.0
# compute average of precision-recall curve
recall_for_conv = np.copy(recall)
recall_for_conv = np.append(recall_for_conv[0], recall_for_conv)
recall_for_conv = np.append(recall_for_conv, 0.0)
stepWidths = np.convolve(
recall_for_conv, [-0.5, 0, 0.5], "valid"
)
# integrate is now simply a dot product
ap_current = np.dot(precision, stepWidths)
elif has_gt:
ap_current = 0.0
else:
ap_current = float("nan")
ap_table[di, li, oi] = ap_current
d_inf = 0
o50 = np.where(np.isclose(self.overlaps, 0.5))
o25 = np.where(np.isclose(self.overlaps, 0.25))
oAllBut25 = np.where(np.logical_not(np.isclose(self.overlaps, 0.25)))
ap_scores = dict()
ap_scores["all_ap"] = np.nanmean(ap_table[d_inf, :, oAllBut25])
ap_scores["all_ap_50%"] = np.nanmean(ap_table[d_inf, :, o50])
ap_scores["all_ap_25%"] = np.nanmean(ap_table[d_inf, :, o25])
ap_scores["classes"] = {}
for li, label_name in enumerate(self.valid_class_names):
ap_scores["classes"][label_name] = {}
ap_scores["classes"][label_name]["ap"] = np.average(
ap_table[d_inf, li, oAllBut25]
)
ap_scores["classes"][label_name]["ap50%"] = np.average(
ap_table[d_inf, li, o50]
)
ap_scores["classes"][label_name]["ap25%"] = np.average(
ap_table[d_inf, li, o25]
)
return ap_scores
def eval(self):
self.trainer.logger.info(">>>>>>>>>>>>>>>> Start Evaluation >>>>>>>>>>>>>>>>")
self.trainer.model.eval()
scenes = []
for i, input_dict in enumerate(self.trainer.val_loader):
assert (
len(input_dict["offset"]) == 1
) # currently only support bs 1 for each GPU
for key in input_dict.keys():
if isinstance(input_dict[key], torch.Tensor):
input_dict[key] = input_dict[key].cuda(non_blocking=True)
with torch.no_grad():
output_dict = self.trainer.model(input_dict)
loss = output_dict["loss"]
segment = input_dict["segment"]
instance = input_dict["instance"]
# map to origin
if "origin_coord" in input_dict.keys():
idx, _ = pointops.knn_query(
1,
input_dict["coord"].float(),
input_dict["offset"].int(),
input_dict["origin_coord"].float(),
input_dict["origin_offset"].int(),
)
idx = idx.cpu().flatten().long()
output_dict["pred_masks"] = output_dict["pred_masks"][:, idx]
segment = input_dict["origin_segment"]
instance = input_dict["origin_instance"]
gt_instances, pred_instance = self.associate_instances(
output_dict, segment, instance
)
scenes.append(dict(gt=gt_instances, pred=pred_instance))
self.trainer.storage.put_scalar("val_loss", loss.item())
self.trainer.logger.info(
"Test: [{iter}/{max_iter}] "
"Loss {loss:.4f} ".format(
iter=i + 1, max_iter=len(self.trainer.val_loader), loss=loss.item()
)
)
loss_avg = self.trainer.storage.history("val_loss").avg
comm.synchronize()
scenes_sync = comm.gather(scenes, dst=0)
scenes = [scene for scenes_ in scenes_sync for scene in scenes_]
ap_scores = self.evaluate_matches(scenes)
all_ap = ap_scores["all_ap"]
all_ap_50 = ap_scores["all_ap_50%"]
all_ap_25 = ap_scores["all_ap_25%"]
self.trainer.logger.info(
"Val result: mAP/AP50/AP25 {:.4f}/{:.4f}/{:.4f}.".format(
all_ap, all_ap_50, all_ap_25
)
)
for i, label_name in enumerate(self.valid_class_names):
ap = ap_scores["classes"][label_name]["ap"]
ap_50 = ap_scores["classes"][label_name]["ap50%"]
ap_25 = ap_scores["classes"][label_name]["ap25%"]
self.trainer.logger.info(
"Class_{idx}-{name} Result: AP/AP50/AP25 {AP:.4f}/{AP50:.4f}/{AP25:.4f}".format(
idx=i, name=label_name, AP=ap, AP50=ap_50, AP25=ap_25
)
)
current_epoch = self.trainer.epoch + 1
if self.trainer.writer is not None:
self.trainer.writer.add_scalar("val/loss", loss_avg, current_epoch)
self.trainer.writer.add_scalar("val/mAP", all_ap, current_epoch)
self.trainer.writer.add_scalar("val/AP50", all_ap_50, current_epoch)
self.trainer.writer.add_scalar("val/AP25", all_ap_25, current_epoch)
self.trainer.logger.info("<<<<<<<<<<<<<<<<< End Evaluation <<<<<<<<<<<<<<<<<")
self.trainer.comm_info["current_metric_value"] = all_ap_50 # save for saver
self.trainer.comm_info["current_metric_name"] = "AP50" # save for saver