Files
2025-04-17 23:14:24 +08:00

87 lines
3.4 KiB
Python

import numpy as np
import torch
from transformers import WavLMModel
from transformers.modeling_outputs import Wav2Vec2BaseModelOutput
from typing import Optional, Tuple, Union
import torch.nn.functional as F
def linear_interpolation(features, output_len: int):
features = features.transpose(1, 2)
output_features = F.interpolate(
features, size=output_len, align_corners=True, mode='linear')
return output_features.transpose(1, 2)
# the implementation of Wav2Vec2Model is borrowed from https://huggingface.co/transformers/_modules/transformers/models/wav2vec2/modeling_wav2vec2.html#Wav2Vec2Model # noqa: E501
# initialize our encoder with the pre-trained wav2vec 2.0 weights.
class WavLMModel(WavLMModel):
def __init__(self, config):
super().__init__(config)
def _freeze_wav2vec2_parameters(self, do_freeze: bool = True):
for param in self.parameters():
param.requires_grad = (not do_freeze)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
mask_time_indices: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
frame_num=None,
interpolate_pos: int = 0,
) -> Union[Tuple, Wav2Vec2BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
extract_features = self.feature_extractor(input_values)
extract_features = extract_features.transpose(1, 2)
if interpolate_pos == 0:
extract_features = linear_interpolation(
extract_features, output_len=frame_num)
if attention_mask is not None:
# compute reduced attention_mask corresponding to feature vectors
attention_mask = self._get_feature_vector_attention_mask(
extract_features.shape[1], attention_mask, add_adapter=False
)
hidden_states, extract_features = self.feature_projection(extract_features)
hidden_states = self._mask_hidden_states(
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
)
encoder_outputs = self.encoder(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = encoder_outputs[0]
if interpolate_pos == 1:
hidden_states = linear_interpolation(
hidden_states, output_len=frame_num)
if self.adapter is not None:
hidden_states = self.adapter(hidden_states)
if not return_dict:
return (hidden_states, extract_features) + encoder_outputs[1:]
return Wav2Vec2BaseModelOutput(
last_hidden_state=hidden_states,
extract_features=extract_features,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)