""" # Copyright 2024-2025 The Alibaba 3DAIGC Team Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np from engines.defaults import ( default_argument_parser, default_config_parser, default_setup, ) from engines.infer import INFER import librosa from tqdm import tqdm import time def export_json(bs_array, json_path): from models.utils import export_blendshape_animation, ARKitBlendShape export_blendshape_animation(bs_array, json_path, ARKitBlendShape, fps=30.0) if __name__ == '__main__': args = default_argument_parser().parse_args() args.config_file = 'configs/lam_audio2exp_config_streaming.py' cfg = default_config_parser(args.config_file, args.options) cfg = default_setup(cfg) infer = INFER.build(dict(type=cfg.infer.type, cfg=cfg)) infer.model.eval() audio, sample_rate = librosa.load(cfg.audio_input, sr=16000) context = None input_num = audio.shape[0]//16000+1 gap = 16000 all_exp = [] for i in tqdm(range(input_num)): start = time.time() output, context = infer.infer_streaming_audio(audio[i*gap:(i+1)*gap], sample_rate, context) end = time.time() print('Inference time {}'.format(end - start)) all_exp.append(output['expression']) all_exp = np.concatenate(all_exp,axis=0) export_json(all_exp, cfg.save_json_path)