""" Copyright 2024-2025 The Alibaba 3DAIGC Team Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os import base64 import gradio as gr import argparse from omegaconf import OmegaConf from gradio_gaussian_render import gaussian_render from engines.defaults import ( default_argument_parser, default_config_parser, default_setup, ) from engines.infer import INFER from pathlib import Path try: import spaces except: pass h5_rendering = True def assert_input_image(input_image): if input_image is None: raise gr.Error('No image selected or uploaded!') def prepare_working_dir(): import tempfile working_dir = tempfile.TemporaryDirectory() return working_dir def get_image_base64(path): with open(path, 'rb') as image_file: encoded_string = base64.b64encode(image_file.read()).decode() return f'data:image/png;base64,{encoded_string}' def do_render(): print('WebGL rendering ....') return def audio_loading(): print("Audio loading ....") return "None" def parse_configs(): parser = argparse.ArgumentParser() parser.add_argument("--config", type=str) parser.add_argument("--infer", type=str) args, unknown = parser.parse_known_args() cfg = OmegaConf.create() cli_cfg = OmegaConf.from_cli(unknown) # parse from ENV if os.environ.get("APP_INFER") is not None: args.infer = os.environ.get("APP_INFER") if os.environ.get("APP_MODEL_NAME") is not None: cli_cfg.model_name = os.environ.get("APP_MODEL_NAME") args.config = args.infer if args.config is None else args.config if args.config is not None: cfg_train = OmegaConf.load(args.config) cfg.source_size = cfg_train.dataset.source_image_res try: cfg.src_head_size = cfg_train.dataset.src_head_size except: cfg.src_head_size = 112 cfg.render_size = cfg_train.dataset.render_image.high _relative_path = os.path.join( cfg_train.experiment.parent, cfg_train.experiment.child, os.path.basename(cli_cfg.model_name).split("_")[-1], ) cfg.save_tmp_dump = os.path.join("exps", "save_tmp", _relative_path) cfg.image_dump = os.path.join("exps", "images", _relative_path) cfg.video_dump = os.path.join("exps", "videos", _relative_path) # output path if args.infer is not None: cfg_infer = OmegaConf.load(args.infer) cfg.merge_with(cfg_infer) cfg.setdefault( "save_tmp_dump", os.path.join("exps", cli_cfg.model_name, "save_tmp") ) cfg.setdefault("image_dump", os.path.join("exps", cli_cfg.model_name, "images")) cfg.setdefault( "video_dump", os.path.join("dumps", cli_cfg.model_name, "videos") ) cfg.setdefault("mesh_dump", os.path.join("dumps", cli_cfg.model_name, "meshes")) cfg.motion_video_read_fps = 30 cfg.merge_with(cli_cfg) cfg.setdefault("logger", "INFO") assert cfg.model_name is not None, "model_name is required" return cfg, cfg_train def create_zip_archive(output_zip='assets/arkitWithBSData.zip', base_dir=""): import os if (os.path.exists(output_zip)): os.remove(output_zip) print(f"Reomve previous file: {output_zip}") run_command = 'zip -r '+output_zip+' '+base_dir os.system(run_command) # check file if(os.path.exists(output_zip)): print(f"Archive created successfully: {output_zip}") else: raise ValueError(f"Archive created failed: {output_zip}") def demo_lam_audio2exp(infer, cfg): def core_fn(image_path: str, audio_params, working_dir): base_id = os.path.basename(image_path).split(".")[0] # set input audio cfg.audio_input = audio_params cfg.save_json_path = os.path.join("./assets/sample_lam", base_id, 'arkitWithBSData', 'bsData.json') infer.infer() create_zip_archive(output_zip='./assets/arkitWithBSData.zip', base_dir=os.path.join("./assets/sample_lam", base_id)) return 'gradio_api/file='+audio_params with gr.Blocks(analytics_enabled=False) as demo: logo_url = './assets/images/logo.jpeg' logo_base64 = get_image_base64(logo_url) gr.HTML(f"""

LAM-A2E: Audio to Expression

""") gr.HTML( """

Notes: This project leverages audio input to generate ARKit blendshapes-driven facial expressions in ⚡real-time⚡, powering ultra-realistic 3D avatars generated by LAM.

""" ) # DISPLAY with gr.Row(): with gr.Column(variant='panel', scale=1): with gr.Tabs(elem_id='lam_input_image'): with gr.TabItem('Input Image'): with gr.Row(): input_image = gr.Image(label='Input Image', image_mode='RGB', height=480, width=270, sources='upload', type='filepath', # 'numpy', elem_id='content_image') # EXAMPLES with gr.Row(): examples = [ ['assets/sample_input/barbara.jpg'], ['assets/sample_input/status.png'], ['assets/sample_input/james.png'], ['assets/sample_input/vfhq_case1.png'], ] gr.Examples( examples=examples, inputs=[input_image], examples_per_page=20, ) with gr.Column(): with gr.Tabs(elem_id='lam_input_audio'): with gr.TabItem('Input Audio'): with gr.Row(): audio_input = gr.Audio(label='Input Audio', type='filepath', waveform_options={ 'sample_rate': 16000, 'waveform_progress_color': '#4682b4' }, elem_id='content_audio') examples = [ ['assets/sample_audio/Nangyanwen_chinese.wav'], ['assets/sample_audio/LiBai_TTS_chinese.wav'], ['assets/sample_audio/LinJing_TTS_chinese.wav'], ['assets/sample_audio/BarackObama_english.wav'], ['assets/sample_audio/HillaryClinton_english.wav'], ['assets/sample_audio/XitongShi_japanese.wav'], ['assets/sample_audio/FangXiao_japanese.wav'], ] gr.Examples( examples=examples, inputs=[audio_input], examples_per_page=10, ) # SETTING with gr.Row(): with gr.Column(variant='panel', scale=1): submit = gr.Button('Generate', elem_id='lam_generate', variant='primary') if h5_rendering: gr.set_static_paths(Path.cwd().absolute() / "assets/") assetPrefix = 'gradio_api/file=assets/' with gr.Row(): gs = gaussian_render(width=380, height=680, assets=assetPrefix + 'arkitWithBSData.zip') working_dir = gr.State() selected_audio = gr.Textbox(visible=False) submit.click( fn=assert_input_image, inputs=[input_image], queue=False, ).success( fn=prepare_working_dir, outputs=[working_dir], queue=False, ).success( fn=core_fn, inputs=[input_image, audio_input, working_dir], outputs=[selected_audio], queue=False, ).success( fn=audio_loading, outputs=[selected_audio], js='''(output_component) => window.loadAudio(output_component)''' ).success( fn=do_render(), js='''() => window.start()''' ) demo.queue() demo.launch() def launch_gradio_app(): os.environ.update({ 'APP_ENABLED': '1', 'APP_MODEL_NAME':'', 'APP_INFER': 'configs/lam_audio2exp_streaming_config.py', 'APP_TYPE': 'infer.audio2exp', 'NUMBA_THREADING_LAYER': 'omp', }) args = default_argument_parser().parse_args() args.config_file = 'configs/lam_audio2exp_config_streaming.py' cfg = default_config_parser(args.config_file, args.options) cfg = default_setup(cfg) cfg.ex_vol = True infer = INFER.build(dict(type=cfg.infer.type, cfg=cfg)) demo_lam_audio2exp(infer, cfg) if __name__ == '__main__': launch_gradio_app()