# LAM-A2E: Audio to Expression [](https://aigc3d.github.io/projects/LAM/) [](https://www.apache.org/licenses/LICENSE-2.0) #### This project leverages audio input to generate ARKit blendshapes-driven facial expressions in ⚡real-time⚡, powering ultra-realistic 3D avatars generated by [LAM](https://github.com/aigc3d/LAM). ## Demo
```
python app_lam_audio2exp.py
```
### Inference
```bash
# example: python inference.py --config-file configs/lam_audio2exp_config_streaming.py --options save_path=exp/audio2exp weight=pretrained_models/lam_audio2exp_streaming.tar audio_input=./assets/sample_audio/BarackObama_english.wav
python inference.py --config-file ${CONFIG_PATH} --options save_path=${SAVE_PATH} weight=${CHECKPOINT_PATH} audio_input=${AUDIO_INPUT}
```
### Acknowledgement
This work is built on many amazing research works and open-source projects:
- [FLAME](https://flame.is.tue.mpg.de)
- [FaceFormer](https://github.com/EvelynFan/FaceFormer)
- [Meshtalk](https://github.com/facebookresearch/meshtalk)
- [Unitalker](https://github.com/X-niper/UniTalker)
- [Pointcept](https://github.com/Pointcept/Pointcept)
Thanks for their excellent works and great contribution.
### Related Works
Welcome to follow our other interesting works:
- [LAM](https://github.com/aigc3d/LAM)
- [LHM](https://github.com/aigc3d/LHM)
### Citation
```
@inproceedings{he2025LAM,
title={LAM: Large Avatar Model for One-shot Animatable Gaussian Head},
author={
Yisheng He and Xiaodong Gu and Xiaodan Ye and Chao Xu and Zhengyi Zhao and Yuan Dong and Weihao Yuan and Zilong Dong and Liefeng Bo
},
booktitle={arXiv preprint arXiv:2502.17796},
year={2025}
}
```