# LAM-A2E: Audio to Expression [![Website](https://raw.githubusercontent.com/prs-eth/Marigold/main/doc/badges/badge-website.svg)](https://aigc3d.github.io/projects/LAM/) [![Apache License](https://img.shields.io/badge/📃-Apache--2.0-929292)](https://www.apache.org/licenses/LICENSE-2.0) [![ModelScope](https://img.shields.io/badge/%20ModelScope%20-Space-blue)](https://www.modelscope.cn/studios/Damo_XR_Lab/LAM-A2E) #### This project leverages audio input to generate ARKit blendshapes-driven facial expressions in ⚡real-time⚡, powering ultra-realistic 3D avatars generated by [LAM](https://github.com/aigc3d/LAM). ## Demo
## 📢 News **[April 21, 2025]** We have released the [ModelScope](https://www.modelscope.cn/studios/Damo_XR_Lab/LAM-A2E) Space !
**[April 21, 2025]** We have released the WebGL Interactive Chatting Avatar SDK on [OpenAvatarChat](https://github.com/HumanAIGC-Engineering/OpenAvatarChat) (including LLM, ASR, TTS, Avatar), with which you can freely chat with our generated 3D Digital Human ! 🔥
### To do list - [ ] Release Huggingface space. - [x] Release Modelscope space. - [ ] Release the LAM-A2E model based on the Flame expression. - [x] Release Interactive Chatting Avatar SDK with [OpenAvatarChat](https://www.modelscope.cn/studios/Damo_XR_Lab/LAM-A2E), including LLM, ASR, TTS, LAM-Avatars. ## 🚀 Get Started ### Environment Setup ```bash git clone git@github.com:aigc3d/LAM_Audio2Expression.git cd LAM_Audio2Expression # Create conda environment (currently only supports Python 3.10) conda create -n lam_a2e python=3.10 # Activate the conda environment conda activate lam_a2e # Install with Cuda 12.1 sh ./scripts/install/install_cu121.sh # Or Install with Cuda 11.8 sh ./scripts/install/install_cu118.sh ``` ### Download ``` # HuggingFace download # Download Assets and Model Weights huggingface-cli download 3DAIGC/LAM_audio2exp --local-dir ./ tar -xzvf LAM_audio2exp_assets.tar && rm -f LAM_audio2exp_assets.tar tar -xzvf LAM_audio2exp_streaming.tar && rm -f LAM_audio2exp_streaming.tar # Or OSS Download (In case of HuggingFace download failing) # Download Assets wget https://virutalbuy-public.oss-cn-hangzhou.aliyuncs.com/share/aigc3d/data/LAM/LAM_audio2exp_assets.tar tar -xzvf LAM_audio2exp_assets.tar && rm -f LAM_audio2exp_assets.tar # Download Model Weights wget https://virutalbuy-public.oss-cn-hangzhou.aliyuncs.com/share/aigc3d/data/LAM/LAM_audio2exp_streaming.tar tar -xzvf LAM_audio2exp_streaming.tar && rm -f LAM_audio2exp_streaming.tar Or Modelscope Download git clone https://www.modelscope.cn/Damo_XR_Lab/LAM_audio2exp.git ./modelscope_download ``` ### Quick Start Guide #### Using Gradio Interface: We provide a simple Gradio demo with **WebGL Render**, and you can get rendering results by uploading audio in seconds. teaser ``` python app_lam_audio2exp.py ``` ### Inference ```bash # example: python inference.py --config-file configs/lam_audio2exp_config_streaming.py --options save_path=exp/audio2exp weight=pretrained_models/lam_audio2exp_streaming.tar audio_input=./assets/sample_audio/BarackObama_english.wav python inference.py --config-file ${CONFIG_PATH} --options save_path=${SAVE_PATH} weight=${CHECKPOINT_PATH} audio_input=${AUDIO_INPUT} ``` ### Acknowledgement This work is built on many amazing research works and open-source projects: - [FLAME](https://flame.is.tue.mpg.de) - [FaceFormer](https://github.com/EvelynFan/FaceFormer) - [Meshtalk](https://github.com/facebookresearch/meshtalk) - [Unitalker](https://github.com/X-niper/UniTalker) - [Pointcept](https://github.com/Pointcept/Pointcept) Thanks for their excellent works and great contribution. ### Related Works Welcome to follow our other interesting works: - [LAM](https://github.com/aigc3d/LAM) - [LHM](https://github.com/aigc3d/LHM) ### Citation ``` @inproceedings{he2025LAM, title={LAM: Large Avatar Model for One-shot Animatable Gaussian Head}, author={ Yisheng He and Xiaodong Gu and Xiaodan Ye and Chao Xu and Zhengyi Zhao and Yuan Dong and Weihao Yuan and Zilong Dong and Liefeng Bo }, booktitle={arXiv preprint arXiv:2502.17796}, year={2025} } ```