mirror of
https://github.com/aigc3d/LAM_Audio2Expression.git
synced 2026-02-04 17:39:24 +08:00
feat: Initial commit
This commit is contained in:
192
utils/comm.py
Normal file
192
utils/comm.py
Normal file
@@ -0,0 +1,192 @@
|
||||
"""
|
||||
The code is base on https://github.com/Pointcept/Pointcept
|
||||
"""
|
||||
|
||||
import functools
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
|
||||
_LOCAL_PROCESS_GROUP = None
|
||||
"""
|
||||
A torch process group which only includes processes that on the same machine as the current process.
|
||||
This variable is set when processes are spawned by `launch()` in "engine/launch.py".
|
||||
"""
|
||||
|
||||
|
||||
def get_world_size() -> int:
|
||||
if not dist.is_available():
|
||||
return 1
|
||||
if not dist.is_initialized():
|
||||
return 1
|
||||
return dist.get_world_size()
|
||||
|
||||
|
||||
def get_rank() -> int:
|
||||
if not dist.is_available():
|
||||
return 0
|
||||
if not dist.is_initialized():
|
||||
return 0
|
||||
return dist.get_rank()
|
||||
|
||||
|
||||
def get_local_rank() -> int:
|
||||
"""
|
||||
Returns:
|
||||
The rank of the current process within the local (per-machine) process group.
|
||||
"""
|
||||
if not dist.is_available():
|
||||
return 0
|
||||
if not dist.is_initialized():
|
||||
return 0
|
||||
assert (
|
||||
_LOCAL_PROCESS_GROUP is not None
|
||||
), "Local process group is not created! Please use launch() to spawn processes!"
|
||||
return dist.get_rank(group=_LOCAL_PROCESS_GROUP)
|
||||
|
||||
|
||||
def get_local_size() -> int:
|
||||
"""
|
||||
Returns:
|
||||
The size of the per-machine process group,
|
||||
i.e. the number of processes per machine.
|
||||
"""
|
||||
if not dist.is_available():
|
||||
return 1
|
||||
if not dist.is_initialized():
|
||||
return 1
|
||||
return dist.get_world_size(group=_LOCAL_PROCESS_GROUP)
|
||||
|
||||
|
||||
def is_main_process() -> bool:
|
||||
return get_rank() == 0
|
||||
|
||||
|
||||
def synchronize():
|
||||
"""
|
||||
Helper function to synchronize (barrier) among all processes when
|
||||
using distributed training
|
||||
"""
|
||||
if not dist.is_available():
|
||||
return
|
||||
if not dist.is_initialized():
|
||||
return
|
||||
world_size = dist.get_world_size()
|
||||
if world_size == 1:
|
||||
return
|
||||
if dist.get_backend() == dist.Backend.NCCL:
|
||||
# This argument is needed to avoid warnings.
|
||||
# It's valid only for NCCL backend.
|
||||
dist.barrier(device_ids=[torch.cuda.current_device()])
|
||||
else:
|
||||
dist.barrier()
|
||||
|
||||
|
||||
@functools.lru_cache()
|
||||
def _get_global_gloo_group():
|
||||
"""
|
||||
Return a process group based on gloo backend, containing all the ranks
|
||||
The result is cached.
|
||||
"""
|
||||
if dist.get_backend() == "nccl":
|
||||
return dist.new_group(backend="gloo")
|
||||
else:
|
||||
return dist.group.WORLD
|
||||
|
||||
|
||||
def all_gather(data, group=None):
|
||||
"""
|
||||
Run all_gather on arbitrary picklable data (not necessarily tensors).
|
||||
Args:
|
||||
data: any picklable object
|
||||
group: a torch process group. By default, will use a group which
|
||||
contains all ranks on gloo backend.
|
||||
Returns:
|
||||
list[data]: list of data gathered from each rank
|
||||
"""
|
||||
if get_world_size() == 1:
|
||||
return [data]
|
||||
if group is None:
|
||||
group = (
|
||||
_get_global_gloo_group()
|
||||
) # use CPU group by default, to reduce GPU RAM usage.
|
||||
world_size = dist.get_world_size(group)
|
||||
if world_size == 1:
|
||||
return [data]
|
||||
|
||||
output = [None for _ in range(world_size)]
|
||||
dist.all_gather_object(output, data, group=group)
|
||||
return output
|
||||
|
||||
|
||||
def gather(data, dst=0, group=None):
|
||||
"""
|
||||
Run gather on arbitrary picklable data (not necessarily tensors).
|
||||
Args:
|
||||
data: any picklable object
|
||||
dst (int): destination rank
|
||||
group: a torch process group. By default, will use a group which
|
||||
contains all ranks on gloo backend.
|
||||
Returns:
|
||||
list[data]: on dst, a list of data gathered from each rank. Otherwise,
|
||||
an empty list.
|
||||
"""
|
||||
if get_world_size() == 1:
|
||||
return [data]
|
||||
if group is None:
|
||||
group = _get_global_gloo_group()
|
||||
world_size = dist.get_world_size(group=group)
|
||||
if world_size == 1:
|
||||
return [data]
|
||||
rank = dist.get_rank(group=group)
|
||||
|
||||
if rank == dst:
|
||||
output = [None for _ in range(world_size)]
|
||||
dist.gather_object(data, output, dst=dst, group=group)
|
||||
return output
|
||||
else:
|
||||
dist.gather_object(data, None, dst=dst, group=group)
|
||||
return []
|
||||
|
||||
|
||||
def shared_random_seed():
|
||||
"""
|
||||
Returns:
|
||||
int: a random number that is the same across all workers.
|
||||
If workers need a shared RNG, they can use this shared seed to
|
||||
create one.
|
||||
All workers must call this function, otherwise it will deadlock.
|
||||
"""
|
||||
ints = np.random.randint(2**31)
|
||||
all_ints = all_gather(ints)
|
||||
return all_ints[0]
|
||||
|
||||
|
||||
def reduce_dict(input_dict, average=True):
|
||||
"""
|
||||
Reduce the values in the dictionary from all processes so that process with rank
|
||||
0 has the reduced results.
|
||||
Args:
|
||||
input_dict (dict): inputs to be reduced. All the values must be scalar CUDA Tensor.
|
||||
average (bool): whether to do average or sum
|
||||
Returns:
|
||||
a dict with the same keys as input_dict, after reduction.
|
||||
"""
|
||||
world_size = get_world_size()
|
||||
if world_size < 2:
|
||||
return input_dict
|
||||
with torch.no_grad():
|
||||
names = []
|
||||
values = []
|
||||
# sort the keys so that they are consistent across processes
|
||||
for k in sorted(input_dict.keys()):
|
||||
names.append(k)
|
||||
values.append(input_dict[k])
|
||||
values = torch.stack(values, dim=0)
|
||||
dist.reduce(values, dst=0)
|
||||
if dist.get_rank() == 0 and average:
|
||||
# only main process gets accumulated, so only divide by
|
||||
# world_size in this case
|
||||
values /= world_size
|
||||
reduced_dict = {k: v for k, v in zip(names, values)}
|
||||
return reduced_dict
|
||||
Reference in New Issue
Block a user