mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-05 01:49:25 +08:00
154 lines
9.8 KiB
Python
154 lines
9.8 KiB
Python
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import torch
|
|
import numpy as np
|
|
import threading
|
|
import time
|
|
from contextlib import nullcontext
|
|
import uuid
|
|
from cosyvoice.utils.common import fade_in_out
|
|
|
|
|
|
class CosyVoiceModel:
|
|
|
|
def __init__(self,
|
|
llm: torch.nn.Module,
|
|
flow: torch.nn.Module,
|
|
hift: torch.nn.Module):
|
|
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
self.llm = llm
|
|
self.flow = flow
|
|
self.hift = hift
|
|
self.token_min_hop_len = 100
|
|
self.token_max_hop_len = 400
|
|
self.token_overlap_len = 20
|
|
self.speech_overlap_len = 34 * 256
|
|
self.window = np.hamming(2 * self.speech_overlap_len)
|
|
self.stream_scale_factor = 1
|
|
assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf'
|
|
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
|
self.flow_hift_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
|
self.lock = threading.Lock()
|
|
# dict used to store session related variable
|
|
self.tts_speech_token = {}
|
|
self.llm_end = {}
|
|
|
|
def load(self, llm_model, flow_model, hift_model):
|
|
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device))
|
|
self.llm.to(self.device).eval()
|
|
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device))
|
|
self.flow.to(self.device).eval()
|
|
self.hift.load_state_dict(torch.load(hift_model, map_location=self.device))
|
|
self.hift.to(self.device).eval()
|
|
|
|
def llm_job(self, text, text_len, prompt_text, prompt_text_len, llm_prompt_speech_token, llm_prompt_speech_token_len, llm_embedding, this_uuid):
|
|
with self.llm_context:
|
|
for i in self.llm.inference(text=text.to(self.device),
|
|
text_len=text_len.to(self.device),
|
|
prompt_text=prompt_text.to(self.device),
|
|
prompt_text_len=prompt_text_len.to(self.device),
|
|
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
|
prompt_speech_token_len=llm_prompt_speech_token_len.to(self.device),
|
|
embedding=llm_embedding.to(self.device),
|
|
sampling=25,
|
|
max_token_text_ratio=30,
|
|
min_token_text_ratio=3):
|
|
self.tts_speech_token[this_uuid].append(i)
|
|
self.llm_end[this_uuid] = True
|
|
|
|
def token2wav(self, token, prompt_token, prompt_token_len, prompt_feat, prompt_feat_len, embedding):
|
|
with self.flow_hift_context:
|
|
tts_mel = self.flow.inference(token=token.to(self.device),
|
|
token_len=torch.tensor([token.size(1)], dtype=torch.int32).to(self.device),
|
|
prompt_token=prompt_token.to(self.device),
|
|
prompt_token_len=prompt_token_len.to(self.device),
|
|
prompt_feat=prompt_feat.to(self.device),
|
|
prompt_feat_len=prompt_feat_len.to(self.device),
|
|
embedding=embedding.to(self.device))
|
|
tts_speech = self.hift.inference(mel=tts_mel).cpu()
|
|
return tts_speech
|
|
|
|
def inference(self, text, text_len, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
|
prompt_text=torch.zeros(1, 0, dtype=torch.int32), prompt_text_len=torch.zeros(1, dtype=torch.int32),
|
|
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), llm_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
|
|
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), flow_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
|
|
prompt_speech_feat=torch.zeros(1, 0, 80), prompt_speech_feat_len=torch.zeros(1, dtype=torch.int32), stream=False):
|
|
# this_uuid is used to track variables related to this inference thread
|
|
this_uuid = str(uuid.uuid1())
|
|
with self.lock:
|
|
self.tts_speech_token[this_uuid], self.llm_end[this_uuid] = [], False
|
|
p = threading.Thread(target=self.llm_job, args=(text.to(self.device), text_len.to(self.device), prompt_text.to(self.device), prompt_text_len.to(self.device),
|
|
llm_prompt_speech_token.to(self.device), llm_prompt_speech_token_len.to(self.device), llm_embedding.to(self.device), this_uuid))
|
|
p.start()
|
|
if stream is True:
|
|
cache_speech, cache_token, token_hop_len = None, None, self.token_min_hop_len
|
|
while True:
|
|
time.sleep(0.1)
|
|
if len(self.tts_speech_token[this_uuid]) >= token_hop_len + self.token_overlap_len:
|
|
this_tts_speech_token = torch.concat(self.tts_speech_token[this_uuid][:token_hop_len + self.token_overlap_len], dim=1)
|
|
with self.flow_hift_context:
|
|
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
|
prompt_token=flow_prompt_speech_token.to(self.device),
|
|
prompt_token_len=flow_prompt_speech_token_len.to(self.device),
|
|
prompt_feat=prompt_speech_feat.to(self.device),
|
|
prompt_feat_len=prompt_speech_feat_len.to(self.device),
|
|
embedding=flow_embedding.to(self.device))
|
|
# fade in/out if necessary
|
|
if cache_speech is not None:
|
|
this_tts_speech = fade_in_out(this_tts_speech, cache_speech, self.window)
|
|
yield {'tts_speech': this_tts_speech[:, :-self.speech_overlap_len]}
|
|
cache_speech = this_tts_speech[:, -self.speech_overlap_len:]
|
|
cache_token = self.tts_speech_token[this_uuid][:token_hop_len]
|
|
with self.lock:
|
|
self.tts_speech_token[this_uuid] = self.tts_speech_token[this_uuid][token_hop_len:]
|
|
# increase token_hop_len for better speech quality
|
|
token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
|
|
if self.llm_end[this_uuid] is True and len(self.tts_speech_token[this_uuid]) < token_hop_len + self.token_overlap_len:
|
|
break
|
|
p.join()
|
|
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
|
this_tts_speech_token = torch.concat(self.tts_speech_token[this_uuid], dim=1)
|
|
if this_tts_speech_token.shape[1] < self.token_min_hop_len + self.token_overlap_len and cache_token is not None:
|
|
cache_token_len = self.token_min_hop_len + self.token_overlap_len - this_tts_speech_token.shape[1]
|
|
this_tts_speech_token = torch.concat([torch.concat(cache_token[-cache_token_len:], dim=1), this_tts_speech_token], dim=1)
|
|
else:
|
|
cache_token_len = 0
|
|
with self.flow_hift_context:
|
|
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
|
prompt_token=flow_prompt_speech_token.to(self.device),
|
|
prompt_token_len=flow_prompt_speech_token_len.to(self.device),
|
|
prompt_feat=prompt_speech_feat.to(self.device),
|
|
prompt_feat_len=prompt_speech_feat_len.to(self.device),
|
|
embedding=flow_embedding.to(self.device))
|
|
this_tts_speech = this_tts_speech[:, int(cache_token_len / this_tts_speech_token.shape[1] * this_tts_speech.shape[1]):]
|
|
if cache_speech is not None:
|
|
this_tts_speech = fade_in_out(this_tts_speech, cache_speech, self.window)
|
|
yield {'tts_speech': this_tts_speech}
|
|
else:
|
|
# deal with all tokens
|
|
p.join()
|
|
this_tts_speech_token = torch.concat(self.tts_speech_token[this_uuid], dim=1)
|
|
with self.flow_hift_context:
|
|
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
|
prompt_token=flow_prompt_speech_token.to(self.device),
|
|
prompt_token_len=flow_prompt_speech_token_len.to(self.device),
|
|
prompt_feat=prompt_speech_feat.to(self.device),
|
|
prompt_feat_len=prompt_speech_feat_len.to(self.device),
|
|
embedding=flow_embedding.to(self.device))
|
|
yield {'tts_speech': this_tts_speech}
|
|
with self.lock:
|
|
self.tts_speech_token.pop(this_uuid)
|
|
self.llm_end.pop(this_uuid)
|
|
torch.cuda.synchronize()
|