mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-05 01:49:25 +08:00
234 lines
7.3 KiB
Python
234 lines
7.3 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Reward calculation for CosyVoice2-0.5B.
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
import re
|
|
import json
|
|
import time
|
|
import argparse
|
|
from typing import List
|
|
|
|
import numpy as np
|
|
import requests
|
|
|
|
|
|
REWARD_SERVER_URL = "http://localhost:8000/v2/models/token2wav_asr/infer"
|
|
|
|
|
|
def _parse_ids(token_str: str) -> List[int]:
|
|
return [int(t) for t in re.findall(r"<\|s_(\d+)\|>", token_str)]
|
|
|
|
|
|
def _remote_reward(tokens: List[int], ground_truth: str, timeout: float = 200.0) -> float:
|
|
"""Send token IDs and ground-truth text to the Triton server and get reward."""
|
|
|
|
tokens_arr = np.array(tokens, dtype=np.int32).reshape(1, -1)
|
|
lens_arr = np.array([[tokens_arr.shape[1]]], dtype=np.int32)
|
|
|
|
gt_arr = np.array([ground_truth.encode("utf-8")], dtype=object)
|
|
|
|
payload = {
|
|
"inputs": [
|
|
{
|
|
"name": "TOKENS",
|
|
"shape": list(tokens_arr.shape),
|
|
"datatype": "INT32",
|
|
"data": tokens_arr.tolist(),
|
|
},
|
|
{
|
|
"name": "TOKEN_LENS",
|
|
"shape": list(lens_arr.shape),
|
|
"datatype": "INT32",
|
|
"data": lens_arr.tolist(),
|
|
},
|
|
{
|
|
"name": "GT_TEXT",
|
|
"shape": [1, 1],
|
|
"datatype": "BYTES",
|
|
"data": [ground_truth],
|
|
},
|
|
]
|
|
}
|
|
rsp = requests.post(
|
|
REWARD_SERVER_URL,
|
|
headers={"Content-Type": "application/json"},
|
|
json=payload,
|
|
timeout=timeout,
|
|
verify=False,
|
|
params={"request_id": "0"},
|
|
)
|
|
rsp.raise_for_status()
|
|
result = rsp.json()
|
|
|
|
try:
|
|
# Reward is returned as the first output
|
|
return float(result["outputs"][0]["data"][0])
|
|
except (KeyError, IndexError, TypeError):
|
|
return 0.0
|
|
|
|
|
|
def compute_score(
|
|
data_source: str,
|
|
solution_str: str,
|
|
ground_truth: str,
|
|
extra_info: dict | None = None,
|
|
*,
|
|
debug_dump: bool = False,
|
|
) -> float:
|
|
"""Return reward in [0, 1] using the Triton ASR service.
|
|
|
|
The reward is based on the pinyin-level WER between the ASR transcript
|
|
produced from *solution_str* and the provided *ground_truth* text.
|
|
"""
|
|
|
|
# Decode token IDs
|
|
ids = _parse_ids(solution_str)
|
|
|
|
# Query remote server for reward
|
|
try:
|
|
reward = _remote_reward(ids, ground_truth)
|
|
except Exception as e:
|
|
reward = 0.0
|
|
|
|
if debug_dump:
|
|
print(
|
|
f"\033[92m[{data_source}] Remote reward: {reward:.4f}\033[0m"
|
|
)
|
|
|
|
return reward
|
|
|
|
|
|
# CLI quick test
|
|
if __name__ == "__main__":
|
|
import sys
|
|
|
|
def get_args():
|
|
"""Parse command line arguments."""
|
|
parser = argparse.ArgumentParser(
|
|
description="Test TTS CER scoring with data from JSONL file",
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--input", "-i",
|
|
type=str,
|
|
default="data/emilia_zh-cosy-tiny-test.jsonl",
|
|
help="Path to input JSONL file"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--max-samples", "-n",
|
|
type=int,
|
|
default=None,
|
|
help="Maximum number of samples to process (default: all)"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--no-interactive",
|
|
action="store_true",
|
|
help="Run in non-interactive mode (process all samples without prompts)"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--debug",
|
|
action="store_true",
|
|
help="Enable debug mode"
|
|
)
|
|
|
|
return parser.parse_args()
|
|
|
|
def load_jsonl(file_path: str):
|
|
"""Load data from jsonl file."""
|
|
data = []
|
|
with open(file_path, 'r', encoding='utf-8') as f:
|
|
for line in f:
|
|
data.append(json.loads(line.strip()))
|
|
return data
|
|
|
|
def code_to_solution_str(code_list: List[int]) -> str:
|
|
"""Convert code list to solution string format."""
|
|
return ''.join([f"<|s_{code}|>" for code in code_list])
|
|
|
|
# Parse command line arguments
|
|
args = get_args()
|
|
|
|
try:
|
|
# Load data from jsonl file
|
|
print(f"Loading data from: {args.input}")
|
|
data_list = load_jsonl(args.input)
|
|
print(f"Loaded {len(data_list)} samples")
|
|
|
|
# Limit samples if specified
|
|
if args.max_samples is not None:
|
|
data_list = data_list[:args.max_samples]
|
|
print(f"Processing first {len(data_list)} samples (limited by --max-samples)")
|
|
|
|
# Process each sample
|
|
begin_time = time.time()
|
|
for i, sample in enumerate(data_list):
|
|
print(f"\n--- Sample {i+1}/{len(data_list)} ---")
|
|
print(f"Index: {sample.get('index', 'unknown')}")
|
|
print(f"Text: {sample['text']}")
|
|
|
|
# Extract required fields
|
|
code_list = sample['code']
|
|
ground_truth = sample['text']
|
|
data_source = sample.get('index', f'sample_{i}') # Use index as data_source
|
|
|
|
# Convert code list to solution string
|
|
solution_str = code_to_solution_str(code_list)
|
|
print(f"Solution tokens: {len(code_list)} tokens")
|
|
if args.debug:
|
|
print(f"Solution string: {solution_str}")
|
|
else:
|
|
print(f"Solution string preview: {solution_str[:100]}..." if len(solution_str) > 100 else f"Solution string: {solution_str}")
|
|
|
|
# Call compute_score function
|
|
try:
|
|
score = compute_score(
|
|
data_source=data_source,
|
|
solution_str=solution_str,
|
|
ground_truth=ground_truth,
|
|
extra_info=None,
|
|
debug_dump=args.debug
|
|
)
|
|
print(f"Final Score: {score:.4f}")
|
|
except Exception as e:
|
|
print(f"Error computing score: {e}")
|
|
|
|
# Ask user if they want to continue (for interactive mode)
|
|
if not args.no_interactive and i < len(data_list) - 1:
|
|
try:
|
|
response = input("\nPress Enter to continue or 'q' to quit: ").strip().lower()
|
|
if response == 'q':
|
|
break
|
|
except KeyboardInterrupt:
|
|
print("\nStopped by user")
|
|
break
|
|
|
|
print(f"\nProcessed {min(i+1, len(data_list))} samples")
|
|
end_time = time.time()
|
|
print(f"Time taken: {end_time - begin_time} seconds")
|
|
except FileNotFoundError:
|
|
print(f"Error: File not found - {args.input}")
|
|
print("Please check the file path or use --input to specify correct path")
|
|
print("Run with --help for usage information")
|
|
except Exception as e:
|
|
print(f"Error: {e}")
|