Files
CosyVoice/runtime/triton_trtllm/run_stepaudio2_dit_token2wav.sh
2025-10-08 18:13:09 +08:00

175 lines
7.4 KiB
Bash

#!/bin/bash
# Copyright (c) 2025 NVIDIA (authors: Yuekai Zhang)
export CUDA_VISIBLE_DEVICES=0
cosyvoice_path=/workspace/CosyVoice
stepaudio2_path=/workspace/Step-Audio2
export PYTHONPATH=${stepaudio2_path}:$PYTHONPATH
export PYTHONPATH=${cosyvoice_path}:$PYTHONPATH
export PYTHONPATH=${cosyvoice_path}/third_party/Matcha-TTS:$PYTHONPATH
stage=$1
stop_stage=$2
huggingface_model_local_dir=./cosyvoice2_llm
model_scope_model_local_dir=./CosyVoice2-0.5B
step_audio_model_dir=./Step-Audio-2-mini
trt_dtype=bfloat16
trt_weights_dir=./trt_weights_${trt_dtype}
trt_engines_dir=./trt_engines_${trt_dtype}
model_repo=./model_repo_cosyvoice2_dit
bls_instance_num=4
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
echo "Cloning Step-Audio2-mini"
git clone https://github.com/yuekaizhang/Step-Audio2.git -b trt $stepaudio2_path
echo "Cloning CosyVoice"
git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git $cosyvoice_path
cd $cosyvoice_path
git submodule update --init --recursive
cd runtime/triton_trtllm
fi
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
echo "Downloading CosyVoice2-0.5B"
# see https://github.com/nvidia-china-sae/mair-hub/blob/main/rl-tutorial/cosyvoice_llm/pretrained_to_huggingface.py
huggingface-cli download --local-dir $huggingface_model_local_dir yuekai/cosyvoice2_llm
modelscope download --model iic/CosyVoice2-0.5B --local_dir $model_scope_model_local_dir
echo "Step-Audio2-mini"
huggingface-cli download --local-dir $step_audio_model_dir stepfun-ai/Step-Audio-2-mini
cd $step_audio_model_dir/token2wav
wget https://huggingface.co/yuekai/cosyvoice2_dit_flow_matching_onnx/resolve/main/flow.decoder.estimator.fp32.dynamic_batch.onnx -O flow.decoder.estimator.fp32.dynamic_batch.onnx
wget https://huggingface.co/yuekai/cosyvoice2_dit_flow_matching_onnx/resolve/main/flow.decoder.estimator.chunk.fp32.dynamic_batch.simplify.onnx -O flow.decoder.estimator.chunk.fp32.dynamic_batch.simplify.onnx
cd -
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
echo "Converting checkpoint to TensorRT weights"
python3 scripts/convert_checkpoint.py --model_dir $huggingface_model_local_dir \
--output_dir $trt_weights_dir \
--dtype $trt_dtype || exit 1
echo "Building TensorRT engines"
trtllm-build --checkpoint_dir $trt_weights_dir \
--output_dir $trt_engines_dir \
--max_batch_size 16 \
--max_num_tokens 32768 \
--gemm_plugin $trt_dtype || exit 1
echo "Testing TensorRT engines"
python3 ./scripts/test_llm.py --input_text "你好,请问你叫什么?" \
--tokenizer_dir $huggingface_model_local_dir \
--top_k 50 --top_p 0.95 --temperature 0.8 \
--engine_dir=$trt_engines_dir || exit 1
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
echo "Creating model repository async mode"
rm -rf $model_repo
mkdir -p $model_repo
cosyvoice2_dir="cosyvoice2_dit"
token2wav_dir="token2wav_dit"
cp -r ./model_repo/${cosyvoice2_dir} $model_repo
cp -r ./model_repo/${token2wav_dir} $model_repo
cp -r ./model_repo/audio_tokenizer $model_repo
cp -r ./model_repo/speaker_embedding $model_repo
ENGINE_PATH=$trt_engines_dir
MAX_QUEUE_DELAY_MICROSECONDS=0
MODEL_DIR=$model_scope_model_local_dir
LLM_TOKENIZER_DIR=$huggingface_model_local_dir
BLS_INSTANCE_NUM=$bls_instance_num
TRITON_MAX_BATCH_SIZE=1
DECOUPLED_MODE=True # Only streaming TTS mode is supported using Nvidia Triton for now
STEP_AUDIO_MODEL_DIR=$step_audio_model_dir/token2wav
python3 scripts/fill_template.py -i ${model_repo}/${token2wav_dir}/config.pbtxt model_dir:${STEP_AUDIO_MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
python3 scripts/fill_template.py -i ${model_repo}/${cosyvoice2_dir}/config.pbtxt model_dir:${MODEL_DIR},bls_instance_num:${BLS_INSTANCE_NUM},llm_tokenizer_dir:${LLM_TOKENIZER_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},decoupled_mode:${DECOUPLED_MODE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
python3 scripts/fill_template.py -i ${model_repo}/audio_tokenizer/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
python3 scripts/fill_template.py -i ${model_repo}/speaker_embedding/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
echo "Starting Token2wav Triton server and Cosyvoice2 llm using trtllm-serve"
mpirun -np 1 --allow-run-as-root --oversubscribe trtllm-serve serve --tokenizer $huggingface_model_local_dir $trt_engines_dir --max_batch_size 16 --kv_cache_free_gpu_memory_fraction 0.4 &
tritonserver --model-repository $model_repo --http-port 18000 &
wait
# Test using curl
# curl http://localhost:8000/v1/chat/completions \
# -H "Content-Type: application/json" \
# -d '{
# "model": "trt_engines_bfloat16",
# "messages":[{"role": "user", "content": "Where is New York?"},
# {"role": "assistant", "content": "<|s_1708|><|s_2050|><|s_2159|>"}],
# "max_tokens": 512,
# "temperature": 0.8,
# "top_p": 0.95,
# "top_k": 50,
# "stop": ["<|eos1|>"],
# "repetition_penalty": 1.2,
# "stream": false
# }'
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
echo "Running benchmark client"
num_task=4
mode=streaming
BLS_INSTANCE_NUM=$bls_instance_num
python3 client_grpc.py \
--server-addr localhost \
--server-port 8001 \
--model-name cosyvoice2_dit \
--num-tasks $num_task \
--mode $mode \
--huggingface-dataset yuekai/seed_tts_cosy2 \
--log-dir ./log_single_gpu_concurrent_tasks_${num_task}_${mode}_bls_${BLS_INSTANCE_NUM}
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
echo "stage 5: Offline TTS (Cosyvoice2 LLM + Step-Audio2-mini DiT Token2Wav) inference using a single python script"
datasets=(wenetspeech4tts) # wenetspeech4tts, test_zh, zero_shot_zh
backend=trtllm # hf, trtllm, vllm, trtllm-serve
batch_sizes=(16)
token2wav_batch_size=1
for batch_size in ${batch_sizes[@]}; do
for dataset in ${datasets[@]}; do
output_dir=./${dataset}_${backend}_llm_batch_size_${batch_size}_token2wav_batch_size_${token2wav_batch_size}
CUDA_VISIBLE_DEVICES=1 \
python3 offline_inference.py \
--output-dir $output_dir \
--llm-model-name-or-path $huggingface_model_local_dir \
--token2wav-path $step_audio_model_dir/token2wav \
--backend $backend \
--batch-size $batch_size --token2wav-batch-size $token2wav_batch_size \
--engine-dir $trt_engines_dir \
--split-name ${dataset} || exit 1
done
done
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
echo "Running Step-Audio2-mini DiT Token2Wav inference using a single python script"
export CUDA_VISIBLE_DEVICES=1
# Note: Using pre-computed cosyvoice2 tokens
python3 streaming_inference.py --enable-trt --strategy equal # equal, exponential
# Offline Token2wav inference
python3 token2wav_dit.py --enable-trt
fi