Files
CosyVoice/cosyvoice/llm/vllm_use_cosyvoice2_model.py

264 lines
10 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# SPDX-License-Identifier: Apache-2.0
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/qwen2/modeling_qwen2.py
# Copyright 2024 The Qwen team.
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Qwen2 model compatible with HuggingFace weights."""
from typing import Iterable, List, Optional, Set, Tuple, Union, Iterator, overload, TypedDict, Mapping, Any
from typing_extensions import TypeVar
import torch
from torch import nn
from vllm.attention import AttentionMetadata
from vllm.config import VllmConfig
from vllm.logger import init_logger
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors
from vllm.model_executor.models.interfaces import T
from vllm.model_executor.models.qwen2 import Qwen2Model
from vllm.model_executor.models.utils import AutoWeightsLoader, maybe_prefix, merge_multimodal_embeddings
logger = init_logger(__name__)
IGNORE_ID = -1
class CosyVoice2Model(nn.Module):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
"gate_up_proj": [
"gate_proj",
"up_proj",
],
}
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
lora_config = vllm_config.lora_config
self.config = config
self.lora_config = lora_config
self.quant_config = quant_config
self.llm_input_size = 896
self.llm_output_size = 896
self.speech_token_size = 6561+3
self.llm_token_size = config.vocab_size
# 2. build speech token language model related modules
self.sos_eos = 0
self.task_id = 1
self.fill_token = 2
self.allow_patterns_overrides = ["llm.*"]
self.llm_embedding = torch.nn.Embedding(2, self.llm_input_size)
self.model = Qwen2Model(vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"))
# self.llm_decoder = nn.Linear(self.llm_output_size, self.speech_token_size)
self.llm_decoder = ParallelLMHead(self.speech_token_size,
self.llm_output_size,
bias=True,
quant_config=quant_config,
prefix=maybe_prefix(
prefix, "llm_decoder"))
self.logits_processor = LogitsProcessor(self.speech_token_size)
# length_normalized_loss: bool = True,
# lsm_weight: float = 0.0,
# self.criterion_ce = LabelSmoothingLoss(
# size=self.speech_token_size,
# padding_idx=IGNORE_ID,
# smoothing=lsm_weight,
# normalize_length=length_normalized_loss,
# )
# 3. [Optional] build speech token related modules
self.speech_embedding = torch.nn.Embedding(self.speech_token_size, self.llm_input_size)
# 4. sampling method
## use vllm sampling method
self.sampler = get_sampler()
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
self.mix_ratio: List[int] = [5, 15]
# 定义特殊token常量
self.llm_token_id_delta = torch.tensor(self.speech_token_size, dtype=torch.int32)
self.sos_eos_token_id = torch.tensor((self.llm_token_id_delta + self.llm_token_size + 1), dtype=torch.int32) # 163840 + 6564 = 170404
self.task_token_id = self.sos_eos_token_id + torch.tensor(1, dtype=torch.int32) # 170405
self.zero_token_id = self.task_token_id + torch.tensor(1, dtype=torch.int32)
self.zero_embed_buffer = torch.zeros(
(vllm_config.scheduler_config.max_num_seqs, self.llm_input_size),
dtype=self.llm_embedding.weight.dtype,
device=self.llm_embedding.weight.device
)
self.inputs_embed_buffer = torch.zeros(
(vllm_config.scheduler_config.max_num_batched_tokens, self.llm_input_size),
dtype=self.llm_embedding.weight.dtype,
device=self.llm_embedding.weight.device,
)
def get_sos_eos_emb(self):
return self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
def get_task_id_emb(self):
return self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
def get_input_embeddings(
self,
input_ids: torch.Tensor,
multimodal_embeddings: Optional[T] = None,
attn_metadata: Optional["AttentionMetadata"] = None,
) -> torch.Tensor:
"""
Returns the input embeddings merged from the text embeddings from
input_ids and the multimodal embeddings generated from multimodal
kwargs.
"""
# 创建掩码,标记哪些 token_id 属于音频 Token
mask = input_ids < self.speech_token_size
# 获取 input_ids 的原始形状
input_shape = input_ids.shape
# 展平 input_ids 和掩码以便统一处理
flat_input_ids = input_ids.view(-1)
flat_mask = mask.view(-1)
inputs_embeds = self.inputs_embed_buffer[:flat_input_ids.shape[0]]
inputs_embeds.zero_()
# Process speech tokens
if flat_mask.any():
speech_token_ids = flat_input_ids[flat_mask]
inputs_embeds[flat_mask] = self.speech_embedding(speech_token_ids)
# 处理大于 delta 的 token_id
if (~flat_mask).any():
llm_token_ids = flat_input_ids[~flat_mask]
llm_embeds = torch.zeros_like(inputs_embeds[~flat_mask])
sos_eos_mask = llm_token_ids == self.sos_eos_token_id
task_mask = llm_token_ids == self.task_token_id
zero_mask = llm_token_ids == self.zero_token_id
normal_mask = ~(sos_eos_mask | task_mask | zero_mask)
# 分层处理逻辑
# 第一优先级SOS/EOS标记
if sos_eos_mask.any():
llm_embeds[sos_eos_mask] = self.llm_embedding.weight[self.sos_eos].unsqueeze(0)
# 第二优先级:任务标记
if task_mask.any():
llm_embeds[task_mask] = self.llm_embedding.weight[self.task_id].unsqueeze(0)
# 第二优先级:空音频标记
if zero_mask.any():
llm_embeds[zero_mask] = self.zero_embed_buffer[:len(llm_embeds[zero_mask])]
# 常规LLM token
if normal_mask.any():
original_ids = llm_token_ids[normal_mask] - self.llm_token_id_delta
# print('original_ids: ',original_ids)
llm_embeds[normal_mask] = self.model.get_input_embeddings(original_ids)
inputs_embeds[~flat_mask] = llm_embeds
inputs_embeds = inputs_embeds.view(*input_shape, self.llm_input_size)
# 合并多模态嵌入(如果有)
if multimodal_embeddings is not None:
inputs_embeds = merge_multimodal_embeddings(
input_ids, inputs_embeds, multimodal_embeddings,
self.config.audio_token_index
)
return inputs_embeds
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if inputs_embeds is None:
inputs_embeds = self.get_input_embeddings(
input_ids,
attn_metadata=attn_metadata,
)
return self.model(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors,
inputs_embeds)
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
logits = self.logits_processor(self.llm_decoder, hidden_states,
sampling_metadata)
return logits
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens
@staticmethod
def convert_weights(weights: Iterable[Tuple[str, torch.Tensor]]) -> Iterable[Tuple[str, torch.Tensor]]:
for name, param in weights:
# 处理Qwen2Model核心参数
if name.startswith("llm."):
if name.startswith("llm.model.model."):
name = name.replace("llm.model.model.", "model.")
else:
continue
# print('weights name: ', name)
yield name, param
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
weights = self.convert_weights(weights)
loader = AutoWeightsLoader(self)
loader.load_weights(weights)