Files
CosyVoice/example.py
lyuxiang.lx 1dcc59676f add japanese
2026-01-12 07:06:45 +00:00

113 lines
8.9 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import sys
sys.path.append('third_party/Matcha-TTS')
from cosyvoice.cli.cosyvoice import AutoModel
import torchaudio
def cosyvoice_example():
""" CosyVoice Usage, check https://fun-audio-llm.github.io/ for more details
"""
cosyvoice = AutoModel(model_dir='pretrained_models/CosyVoice-300M-SFT')
# sft usage
print(cosyvoice.list_available_spks())
# change stream=True for chunk stream inference
for i, j in enumerate(cosyvoice.inference_sft('你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?', '中文女', stream=False)):
torchaudio.save('sft_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
cosyvoice = AutoModel(model_dir='pretrained_models/CosyVoice-300M')
# zero_shot usage
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', './asset/zero_shot_prompt.wav')):
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
# cross_lingual usage, <|zh|><|en|><|ja|><|yue|><|ko|> for Chinese/English/Japanese/Cantonese/Korean
for i, j in enumerate(cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that\'s coming into the family is a reason why sometimes we don\'t buy the whole thing.',
'./asset/cross_lingual_prompt.wav')):
torchaudio.save('cross_lingual_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
# vc usage
for i, j in enumerate(cosyvoice.inference_vc('./asset/cross_lingual_prompt.wav', './asset/zero_shot_prompt.wav')):
torchaudio.save('vc_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
cosyvoice = AutoModel(model_dir='pretrained_models/CosyVoice-300M-Instruct')
# instruct usage, support <laughter></laughter><strong></strong>[laughter][breath]
for i, j in enumerate(cosyvoice.inference_instruct('在面对挑战时,他展现了非凡的<strong>勇气</strong>与<strong>智慧</strong>。', '中文男',
'Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.<|endofprompt|>')):
torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
def cosyvoice2_example():
""" CosyVoice2 Usage, check https://funaudiollm.github.io/cosyvoice2/ for more details
"""
cosyvoice = AutoModel(model_dir='pretrained_models/CosyVoice2-0.5B')
# NOTE if you want to reproduce the results on https://funaudiollm.github.io/cosyvoice2, please add text_frontend=False during inference
# zero_shot usage
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', './asset/zero_shot_prompt.wav')):
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
# save zero_shot spk for future usage
assert cosyvoice.add_zero_shot_spk('希望你以后能够做的比我还好呦。', './asset/zero_shot_prompt.wav', 'my_zero_shot_spk') is True
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '', '', zero_shot_spk_id='my_zero_shot_spk')):
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
cosyvoice.save_spkinfo()
# fine grained control, for supported control, check cosyvoice/tokenizer/tokenizer.py#L248
for i, j in enumerate(cosyvoice.inference_cross_lingual('在他讲述那个荒诞故事的过程中,他突然[laughter]停下来,因为他自己也被逗笑了[laughter]。', './asset/zero_shot_prompt.wav')):
torchaudio.save('fine_grained_control_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
# instruct usage
for i, j in enumerate(cosyvoice.inference_instruct2('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '用四川话说这句话<|endofprompt|>', './asset/zero_shot_prompt.wav')):
torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
# bistream usage, you can use generator as input, this is useful when using text llm model as input
# NOTE you should still have some basic sentence split logic because llm can not handle arbitrary sentence length
def text_generator():
yield '收到好友从远方寄来的生日礼物,'
yield '那份意外的惊喜与深深的祝福'
yield '让我心中充满了甜蜜的快乐,'
yield '笑容如花儿般绽放。'
for i, j in enumerate(cosyvoice.inference_zero_shot(text_generator(), '希望你以后能够做的比我还好呦。', './asset/zero_shot_prompt.wav', stream=False)):
torchaudio.save('zero_shot_bistream_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
def cosyvoice3_example():
""" CosyVoice3 Usage, check https://funaudiollm.github.io/cosyvoice3/ for more details
"""
cosyvoice = AutoModel(model_dir='pretrained_models/Fun-CosyVoice3-0.5B')
# zero_shot usage
for i, j in enumerate(cosyvoice.inference_zero_shot('八百标兵奔北坡,北坡炮兵并排跑,炮兵怕把标兵碰,标兵怕碰炮兵炮。', 'You are a helpful assistant.<|endofprompt|>希望你以后能够做的比我还好呦。',
'./asset/zero_shot_prompt.wav', stream=False)):
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
# fine grained control, for supported control, check cosyvoice/tokenizer/tokenizer.py#L280
for i, j in enumerate(cosyvoice.inference_cross_lingual('You are a helpful assistant.<|endofprompt|>[breath]因为他们那一辈人[breath]在乡里面住的要习惯一点,[breath]邻居都很活络,[breath]嗯,都很熟悉。[breath]',
'./asset/zero_shot_prompt.wav', stream=False)):
torchaudio.save('fine_grained_control_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
# instruct usage, for supported control, check cosyvoice/utils/common.py#L28
for i, j in enumerate(cosyvoice.inference_instruct2('好少咯,一般系放嗰啲国庆啊,中秋嗰啲可能会咯。', 'You are a helpful assistant. 请用广东话表达。<|endofprompt|>',
'./asset/zero_shot_prompt.wav', stream=False)):
torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
for i, j in enumerate(cosyvoice.inference_instruct2('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', 'You are a helpful assistant. 请用尽可能快地语速说一句话。<|endofprompt|>',
'./asset/zero_shot_prompt.wav', stream=False)):
torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
# hotfix usage
for i, j in enumerate(cosyvoice.inference_zero_shot('高管也通过电话、短信、微信等方式对报道[j][ǐ]予好评。', 'You are a helpful assistant.<|endofprompt|>希望你以后能够做的比我还好呦。',
'./asset/zero_shot_prompt.wav', stream=False)):
torchaudio.save('hotfix_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
# NOTE for Japanese usage, you must translate it to katakana.
# 歴史的世界においては、過去は単に過ぎ去ったものではない、プラトンのいう如く非有が有である。 -> レキシ テキ セカイ ニ オイ テ ワ、カコ ワ タンニ スギサッ タ モノ デ ワ ナイ、プラトン イウ ゴトク ヒ ユー ガ ユー デ アル。
for i, j in enumerate(cosyvoice.inference_cross_lingual('You are a helpful assistant.<|endofprompt|>レキシ テキ セカイ ニ オイ テ ワ、カコ ワ タンニ スギサッ タ モノ デ ワ ナイ、プラトン イウ ゴトク ヒ ユー ガ ユー デ アル。',
'./asset/zero_shot_prompt.wav', stream=False)):
torchaudio.save('japanese_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
def main():
# cosyvoice_example()
# cosyvoice2_example()
cosyvoice3_example()
if __name__ == '__main__':
main()