Files
CosyVoice/runtime/triton_trtllm/model_repo/cosyvoice2_dit/1/model.py
2025-10-09 15:13:43 +08:00

395 lines
17 KiB
Python

# Copyright 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import json
import math
import os
import re
import time
from typing import Dict, List, Tuple, Optional, Union
import asyncio
import httpx
import numpy as np
import torch
from torch.utils.dlpack import from_dlpack, to_dlpack
import triton_python_backend_utils as pb_utils
from transformers import AutoTokenizer
import torchaudio
from matcha.utils.audio import mel_spectrogram
ORIGINAL_VOCAB_SIZE = 151663
torch.set_num_threads(1)
def parse_speech_token_string(response_text: str) -> List[int]:
"""
Parses a string of speech tokens (e.g., "<|s_123|><|s_456|>") into a list of integer IDs.
"""
speech_tokens = response_text.strip().split('><')
if len(speech_tokens) > 1:
# Add back the missing '<' and '>' for proper parsing
speech_tokens = ['<' + t if not t.startswith('<') else t for t in speech_tokens]
speech_tokens = [t + '>' if not t.endswith('>') else t for t in speech_tokens]
speech_ids = []
for token_str in speech_tokens:
match = re.match(r'<\|s_(\d+)\|>', token_str)
if match:
speech_ids.append(int(match.group(1)))
return speech_ids
class TritonPythonModel:
"""Triton Python model for Spark TTS.
This model orchestrates the end-to-end TTS pipeline by coordinating
between audio tokenizer, LLM, and vocoder components.
"""
def initialize(self, args):
"""Initialize the model.
Args:
args: Dictionary containing model configuration
"""
self.logger = pb_utils.Logger
# Parse model parameters
self.model_config = json.loads(args['model_config'])
parameters = self.model_config['parameters']
model_params = {k: v["string_value"] for k, v in parameters.items()}
self.dynamic_chunk_strategy = model_params.get("dynamic_chunk_strategy", "exponential") # "exponential" or "time_based"
self.logger.log_info(f"Using dynamic chunk strategy: {self.dynamic_chunk_strategy}")
# Initialize tokenizer
llm_tokenizer_dir = model_params["llm_tokenizer_dir"]
self.tokenizer = AutoTokenizer.from_pretrained(llm_tokenizer_dir)
self.prompt_template = "<|sos|>{input_text}<|task_id|>"
self.eos_token_id = self.tokenizer.convert_tokens_to_ids("<|eos1|>")
self.device = torch.device("cuda")
self.decoupled = pb_utils.using_decoupled_model_transaction_policy(self.model_config)
self.token_frame_rate = 25
self.flow_pre_lookahead_len = 3
self.token_hop_len = 15
self.http_client = httpx.AsyncClient()
self.api_base = "http://localhost:8000/v1/chat/completions"
self.speaker_cache = {}
def _convert_speech_tokens_to_str(self, speech_tokens: Union[torch.Tensor, List]) -> str:
"""Converts a tensor or list of speech token IDs to a string representation."""
if isinstance(speech_tokens, torch.Tensor):
# Ensure tensor is on CPU and flattened
speech_tokens = speech_tokens.cpu().numpy().flatten().tolist()
speech_id_str = ""
for token_id in speech_tokens:
# Convert token ID back to the speech number N
token_num = token_id - ORIGINAL_VOCAB_SIZE
speech_id_str += f"<|s_{token_num}|>"
return speech_id_str
async def forward_llm_async(self, target_text: str, reference_text: str, prompt_speech_tokens: Union[torch.Tensor, List]):
"""
Asynchronously sends a request to the TRTLLM-serve endpoint and processes the streaming response.
"""
full_text = f"{reference_text}{target_text}"
prompt_speech_tokens_str = self._convert_speech_tokens_to_str(prompt_speech_tokens)
chat = [
{"role": "user", "content": full_text},
{"role": "assistant", "content": prompt_speech_tokens_str}
]
payload = {
"model": "trt_engines_bfloat16",
"messages": chat,
"max_tokens": 750,
"temperature": 0.8,
"top_p": 0.95,
"top_k": 50,
"repetition_penalty": 1.1,
"stop": ["<|eos1|>", "<|eos|>"],
"stream": True,
}
buffer = ""
async with self.http_client.stream("POST", self.api_base, json=payload, timeout=None) as response:
response.raise_for_status()
async for line in response.aiter_lines():
if line.startswith("data: "):
line_data = line[len("data: "):].strip()
if line_data == "[DONE]":
break
try:
json_data = json.loads(line_data)
content = json_data.get("choices", [{}])[0].get("delta", {}).get("content")
if content:
buffer += content
while True:
match = re.search(r"<\|s_(\d+)\|>", buffer)
if not match:
break
token_num = int(match.group(1))
final_id = token_num + ORIGINAL_VOCAB_SIZE
yield final_id
buffer = buffer[match.end():]
except json.JSONDecodeError:
self.logger.log_info(f"Skipping non-JSON line: {line_data}")
continue
# Process any remaining complete tokens in the buffer after the stream ends
while True:
match = re.search(r"<\|s_(\d+)\|>", buffer)
if not match:
break
token_num = int(match.group(1))
final_id = token_num + ORIGINAL_VOCAB_SIZE
yield final_id
buffer = buffer[match.end():]
def forward_audio_tokenizer(self, wav, wav_len):
"""Forward pass through the audio tokenizer component.
Args:
wav: Input waveform tensor
wav_len: Waveform length tensor
Returns:
Tuple of global and semantic tokens
"""
inference_request = pb_utils.InferenceRequest(
model_name='audio_tokenizer',
requested_output_names=['prompt_speech_tokens'],
inputs=[wav, wav_len]
)
inference_response = inference_request.exec()
if inference_response.has_error():
raise pb_utils.TritonModelException(inference_response.error().message())
# Extract and convert output tensors
prompt_speech_tokens = pb_utils.get_output_tensor_by_name(inference_response, 'prompt_speech_tokens')
prompt_speech_tokens = torch.utils.dlpack.from_dlpack(prompt_speech_tokens.to_dlpack()).cpu()
return prompt_speech_tokens
def forward_speaker_embedding(self, wav):
"""Forward pass through the speaker embedding component.
Args:
wav: Input waveform tensor
Returns:
Prompt speaker embedding tensor
"""
inference_request = pb_utils.InferenceRequest(
model_name='speaker_embedding',
requested_output_names=['prompt_spk_embedding'],
inputs=[pb_utils.Tensor.from_dlpack("reference_wav", to_dlpack(wav))]
)
inference_response = inference_request.exec()
if inference_response.has_error():
raise pb_utils.TritonModelException(inference_response.error().message())
# Extract and convert output tensors
prompt_spk_embedding = pb_utils.get_output_tensor_by_name(inference_response, 'prompt_spk_embedding')
prompt_spk_embedding = torch.utils.dlpack.from_dlpack(prompt_spk_embedding.to_dlpack())
return prompt_spk_embedding
async def forward_token2wav(
self,
index: int,
target_speech_tokens: torch.Tensor,
request_id: str,
reference_wav: object,
reference_wav_len: object,
finalize: bool = None) -> torch.Tensor:
"""Forward pass through the vocoder component.
Args:
index: Index of the request
target_speech_tokens: Target speech tokens tensor
request_id: Request ID
reference_wav: Reference waveform tensor
reference_wav_len: Reference waveform length tensor
finalize: Whether to finalize the request
Returns:
Generated waveform tensor
"""
target_speech_tokens_tensor = pb_utils.Tensor.from_dlpack("target_speech_tokens", to_dlpack(target_speech_tokens))
finalize_tensor = pb_utils.Tensor("finalize", np.array([[finalize]], dtype=np.bool_))
inputs_tensor = [target_speech_tokens_tensor, reference_wav, reference_wav_len, finalize_tensor]
# Create and execute inference request
inference_request = pb_utils.InferenceRequest(
model_name='token2wav_dit',
requested_output_names=[
"waveform",
],
inputs=inputs_tensor,
request_id=request_id,
parameters={"priority": index + 1},
)
inference_response = await inference_request.async_exec()
if inference_response.has_error():
raise pb_utils.TritonModelException(inference_response.error().message())
# Extract and convert output waveform
waveform = pb_utils.get_output_tensor_by_name(inference_response, 'waveform')
waveform = torch.utils.dlpack.from_dlpack(waveform.to_dlpack()).cpu()
return waveform
def _extract_speech_feat(self, speech):
speech_feat = mel_spectrogram(
speech,
n_fft=1920,
num_mels=80,
sampling_rate=24000,
hop_size=480,
win_size=1920,
fmin=0,
fmax=8000).squeeze(
dim=0).transpose(
0,
1).to(
self.device)
speech_feat = speech_feat.unsqueeze(dim=0)
return speech_feat
async def _process_request(self, request):
request_id = request.request_id()
reference_text = pb_utils.get_input_tensor_by_name(request, "reference_text").as_numpy()
reference_text = reference_text[0][0].decode('utf-8')
wav = pb_utils.get_input_tensor_by_name(request, "reference_wav")
wav_len = pb_utils.get_input_tensor_by_name(request, "reference_wav_len")
if reference_text not in self.speaker_cache:
self.speaker_cache[reference_text] = self.forward_audio_tokenizer(wav, wav_len).unsqueeze(0)
prompt_speech_tokens = self.speaker_cache[reference_text]
target_text = pb_utils.get_input_tensor_by_name(request, "target_text").as_numpy()
target_text = target_text[0][0].decode('utf-8')
if self.decoupled:
response_sender = request.get_response_sender()
semantic_token_ids_arr = []
token_offset, chunk_index = 0, 0
start_time = time.time()
this_token_hop_len = self.token_hop_len
async for generated_ids in self.forward_llm_async(
target_text=target_text,
reference_text=reference_text,
prompt_speech_tokens=prompt_speech_tokens,
):
if not generated_ids:
break
semantic_token_ids_arr.append(generated_ids)
while True:
pending_num = len(semantic_token_ids_arr) - token_offset
if pending_num >= this_token_hop_len + self.flow_pre_lookahead_len:
this_tts_speech_token = semantic_token_ids_arr[token_offset:token_offset + this_token_hop_len + self.flow_pre_lookahead_len]
this_tts_speech_token = torch.tensor(this_tts_speech_token).unsqueeze(dim=0).to(torch.int32).to(self.device)
sub_tts_speech = await self.forward_token2wav(
chunk_index,
this_tts_speech_token, request_id, wav, wav_len, False
)
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech))
inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
response_sender.send(inference_response)
token_offset += this_token_hop_len
if self.dynamic_chunk_strategy == "exponential":
this_token_hop_len = self.token_frame_rate * (2 ** chunk_index)
elif self.dynamic_chunk_strategy == "equal":
this_token_hop_len = self.token_hop_len
elif self.dynamic_chunk_strategy == "time_based":
# see https://github.com/qi-hua/async_cosyvoice/blob/main/model.py#L306
cost_time = time.time() - start_time
duration = token_offset / self.token_frame_rate
if chunk_index > 0 and cost_time > 0:
avg_chunk_processing_time = cost_time / (chunk_index + 1)
if avg_chunk_processing_time > 0:
multiples = (duration - cost_time) / avg_chunk_processing_time
next_pending_num = len(semantic_token_ids_arr) - token_offset
if multiples > 4:
this_token_hop_len = (next_pending_num // self.token_hop_len + 1) * self.token_hop_len
elif multiples > 2:
this_token_hop_len = (next_pending_num // self.token_hop_len) * self.token_hop_len
else:
this_token_hop_len = self.token_hop_len
this_token_hop_len = max(self.token_hop_len, this_token_hop_len)
chunk_index += 1
else:
break
this_tts_speech_token = torch.tensor(semantic_token_ids_arr[token_offset:]).unsqueeze(dim=0).to(torch.int32).to(self.device)
sub_tts_speech = await self.forward_token2wav(chunk_index, this_tts_speech_token, request_id, wav, wav_len, True)
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech))
inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
response_sender.send(inference_response)
response_sender.send(flags=pb_utils.TRITONSERVER_RESPONSE_COMPLETE_FINAL)
else:
raise NotImplementedError("Offline TTS mode is not supported")
async def execute(self, requests):
"""Execute inference on the batched requests.
Args:
requests: List of inference requests
Returns:
List of inference responses containing generated audio
"""
tasks = [
asyncio.create_task(self._process_request(request))
for request in requests
]
await asyncio.gather(*tasks)
return None
def finalize(self):
self.logger.log_info("Finalizing CosyVoice DIT model")
if hasattr(self, "http_client"):
asyncio.run(self.http_client.aclose())