Files
CosyVoice/runtime/triton_trtllm/scripts/test_llm.py
2025-07-22 06:50:13 -07:00

145 lines
5.0 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import ast
import csv
import os
from pathlib import Path
from typing import List, Optional
import numpy as np
import torch
import tensorrt_llm
from tensorrt_llm.logger import logger
from tensorrt_llm.runtime import ModelRunnerCpp
from transformers import AutoTokenizer
def parse_arguments(args=None):
parser = argparse.ArgumentParser()
parser.add_argument(
'--input_text',
type=str,
nargs='+',
default=["Born in north-east France, Soyer trained as a"])
parser.add_argument('--tokenizer_dir', type=str, default="meta-llama/Meta-Llama-3-8B-Instruct")
parser.add_argument('--engine_dir', type=str, default="meta-llama/Meta-Llama-3-8B-Instruct")
parser.add_argument('--log_level', type=str, default="debug")
parser.add_argument('--kv_cache_free_gpu_memory_fraction', type=float, default=0.6)
parser.add_argument('--temperature', type=float, default=0.8)
parser.add_argument('--top_k', type=int, default=50)
parser.add_argument('--top_p', type=float, default=0.95)
return parser.parse_args(args=args)
def parse_input(tokenizer,
input_text=None,
prompt_template=None):
batch_input_ids = []
for curr_text in input_text:
if prompt_template is not None:
curr_text = prompt_template.format(input_text=curr_text)
input_ids = tokenizer.encode(
curr_text)
batch_input_ids.append(input_ids)
batch_input_ids = [
torch.tensor(x, dtype=torch.int32) for x in batch_input_ids
]
logger.debug(f"Input token ids (batch_size = {len(batch_input_ids)}):")
for i, input_ids in enumerate(batch_input_ids):
logger.debug(f"Request {i}: {input_ids.tolist()}")
return batch_input_ids
def main(args):
runtime_rank = tensorrt_llm.mpi_rank()
logger.set_level(args.log_level)
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_dir)
prompt_template = "<|sos|>{input_text}<|task_id|>"
end_id = tokenizer.convert_tokens_to_ids("<|eos1|>")
batch_input_ids = parse_input(tokenizer=tokenizer,
input_text=args.input_text,
prompt_template=prompt_template)
input_lengths = [x.size(0) for x in batch_input_ids]
runner_kwargs = dict(
engine_dir=args.engine_dir,
rank=runtime_rank,
max_output_len=1024,
enable_context_fmha_fp32_acc=False,
max_batch_size=len(batch_input_ids),
max_input_len=max(input_lengths),
kv_cache_free_gpu_memory_fraction=args.kv_cache_free_gpu_memory_fraction,
cuda_graph_mode=False,
gather_generation_logits=False,
)
runner = ModelRunnerCpp.from_dir(**runner_kwargs)
with torch.no_grad():
outputs = runner.generate(
batch_input_ids=batch_input_ids,
max_new_tokens=1024,
end_id=end_id,
pad_id=end_id,
temperature=args.temperature,
top_k=args.top_k,
top_p=args.top_p,
num_return_sequences=1,
repetition_penalty=1.1,
random_seed=42,
streaming=False,
output_sequence_lengths=True,
output_generation_logits=False,
return_dict=True,
return_all_generated_tokens=False)
torch.cuda.synchronize()
output_ids, sequence_lengths = outputs["output_ids"], outputs["sequence_lengths"]
num_output_sents, num_beams, _ = output_ids.size()
assert num_beams == 1
beam = 0
batch_size = len(input_lengths)
num_return_sequences = num_output_sents // batch_size
assert num_return_sequences == 1
for i in range(batch_size * num_return_sequences):
batch_idx = i // num_return_sequences
seq_idx = i % num_return_sequences
inputs = output_ids[i][0][:input_lengths[batch_idx]].tolist()
input_text = tokenizer.decode(inputs)
print(f'Input [Text {batch_idx}]: \"{input_text}\"')
output_begin = input_lengths[batch_idx]
output_end = sequence_lengths[i][beam]
outputs = output_ids[i][beam][output_begin:output_end].tolist()
output_text = tokenizer.decode(outputs)
print(f'Output [Text {batch_idx}]: \"{output_text}\"')
logger.debug(str(outputs))
if __name__ == '__main__':
args = parse_arguments()
main(args)