mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-05 01:49:25 +08:00
225 lines
9.7 KiB
Bash
225 lines
9.7 KiB
Bash
#!/bin/bash
|
|
# Copyright (c) 2025 NVIDIA (authors: Yuekai Zhang)
|
|
export CUDA_VISIBLE_DEVICES=0
|
|
cosyvoice_path=/workspace/CosyVoice
|
|
stepaudio2_path=/workspace/Step-Audio2
|
|
|
|
export PYTHONPATH=${stepaudio2_path}:$PYTHONPATH
|
|
export PYTHONPATH=${cosyvoice_path}:$PYTHONPATH
|
|
export PYTHONPATH=${cosyvoice_path}/third_party/Matcha-TTS:$PYTHONPATH
|
|
|
|
stage=$1
|
|
stop_stage=$2
|
|
|
|
huggingface_model_local_dir=./cosyvoice2_llm
|
|
model_scope_model_local_dir=./CosyVoice2-0.5B
|
|
step_audio_model_dir=./Step-Audio-2-mini
|
|
|
|
trt_dtype=bfloat16
|
|
trt_weights_dir=./trt_weights_${trt_dtype}
|
|
trt_engines_dir=./trt_engines_${trt_dtype}
|
|
|
|
model_repo=./model_repo_cosyvoice2_dit
|
|
bls_instance_num=10
|
|
|
|
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
|
|
|
|
echo "Cloning Step-Audio2-mini"
|
|
git clone https://github.com/yuekaizhang/Step-Audio2.git -b trt $stepaudio2_path
|
|
|
|
echo "Cloning CosyVoice"
|
|
git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git $cosyvoice_path
|
|
cd $cosyvoice_path
|
|
git submodule update --init --recursive
|
|
cd runtime/triton_trtllm
|
|
fi
|
|
|
|
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
|
echo "Downloading CosyVoice2-0.5B"
|
|
# see https://github.com/nvidia-china-sae/mair-hub/blob/main/rl-tutorial/cosyvoice_llm/pretrained_to_huggingface.py
|
|
huggingface-cli download --local-dir $huggingface_model_local_dir yuekai/cosyvoice2_llm
|
|
modelscope download --model iic/CosyVoice2-0.5B --local_dir $model_scope_model_local_dir
|
|
|
|
echo "Step-Audio2-mini"
|
|
huggingface-cli download --local-dir $step_audio_model_dir stepfun-ai/Step-Audio-2-mini
|
|
cd $step_audio_model_dir/token2wav
|
|
wget https://huggingface.co/yuekai/cosyvoice2_dit_flow_matching_onnx/resolve/main/flow.decoder.estimator.fp32.dynamic_batch.onnx -O flow.decoder.estimator.fp32.dynamic_batch.onnx
|
|
wget https://huggingface.co/yuekai/cosyvoice2_dit_flow_matching_onnx/resolve/main/flow.decoder.estimator.chunk.fp32.dynamic_batch.simplify.onnx -O flow.decoder.estimator.chunk.fp32.dynamic_batch.simplify.onnx
|
|
cd -
|
|
fi
|
|
|
|
|
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
|
echo "Converting checkpoint to TensorRT weights"
|
|
python3 scripts/convert_checkpoint.py --model_dir $huggingface_model_local_dir \
|
|
--output_dir $trt_weights_dir \
|
|
--dtype $trt_dtype || exit 1
|
|
|
|
echo "Building TensorRT engines"
|
|
trtllm-build --checkpoint_dir $trt_weights_dir \
|
|
--output_dir $trt_engines_dir \
|
|
--max_batch_size 64 \
|
|
--max_num_tokens 32768 \
|
|
--gemm_plugin $trt_dtype || exit 1
|
|
|
|
echo "Testing TensorRT engines"
|
|
python3 ./scripts/test_llm.py --input_text "你好,请问你叫什么?" \
|
|
--tokenizer_dir $huggingface_model_local_dir \
|
|
--top_k 50 --top_p 0.95 --temperature 0.8 \
|
|
--engine_dir=$trt_engines_dir || exit 1
|
|
fi
|
|
|
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
|
echo "Creating model repository async mode"
|
|
rm -rf $model_repo
|
|
mkdir -p $model_repo
|
|
cosyvoice2_dir="cosyvoice2_dit"
|
|
token2wav_dir="token2wav_dit"
|
|
|
|
cp -r ./model_repo/${cosyvoice2_dir} $model_repo
|
|
cp -r ./model_repo/${token2wav_dir} $model_repo
|
|
cp -r ./model_repo/audio_tokenizer $model_repo
|
|
cp -r ./model_repo/speaker_embedding $model_repo
|
|
|
|
|
|
ENGINE_PATH=$trt_engines_dir
|
|
MAX_QUEUE_DELAY_MICROSECONDS=0
|
|
MODEL_DIR=$model_scope_model_local_dir
|
|
LLM_TOKENIZER_DIR=$huggingface_model_local_dir
|
|
BLS_INSTANCE_NUM=$bls_instance_num
|
|
TRITON_MAX_BATCH_SIZE=1
|
|
DECOUPLED_MODE=True # Only streaming TTS mode is supported using Nvidia Triton for now
|
|
STEP_AUDIO_MODEL_DIR=$step_audio_model_dir/token2wav
|
|
|
|
python3 scripts/fill_template.py -i ${model_repo}/${token2wav_dir}/config.pbtxt model_dir:${STEP_AUDIO_MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
|
|
python3 scripts/fill_template.py -i ${model_repo}/${cosyvoice2_dir}/config.pbtxt model_dir:${MODEL_DIR},bls_instance_num:${BLS_INSTANCE_NUM},llm_tokenizer_dir:${LLM_TOKENIZER_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},decoupled_mode:${DECOUPLED_MODE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
|
|
python3 scripts/fill_template.py -i ${model_repo}/audio_tokenizer/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
|
|
python3 scripts/fill_template.py -i ${model_repo}/speaker_embedding/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
|
|
|
|
fi
|
|
|
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
|
echo "Starting Token2wav Triton server and Cosyvoice2 llm using trtllm-serve"
|
|
mpirun -np 1 --allow-run-as-root --oversubscribe trtllm-serve serve --tokenizer $huggingface_model_local_dir $trt_engines_dir --max_batch_size 64 --kv_cache_free_gpu_memory_fraction 0.4 &
|
|
tritonserver --model-repository $model_repo --http-port 18000 &
|
|
wait
|
|
# Test using curl
|
|
# curl http://localhost:8000/v1/chat/completions \
|
|
# -H "Content-Type: application/json" \
|
|
# -d '{
|
|
# "model": "",
|
|
# "messages":[{"role": "user", "content": "Where is New York?"},
|
|
# {"role": "assistant", "content": "<|s_1708|><|s_2050|><|s_2159|>"}],
|
|
# "max_tokens": 512,
|
|
# "temperature": 0.8,
|
|
# "top_p": 0.95,
|
|
# "top_k": 50,
|
|
# "stop": ["<|eos1|>"],
|
|
# "repetition_penalty": 1.2,
|
|
# "stream": false
|
|
# }'
|
|
fi
|
|
|
|
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
|
echo "Running benchmark client"
|
|
num_task=4
|
|
mode=streaming
|
|
BLS_INSTANCE_NUM=$bls_instance_num
|
|
|
|
python3 client_grpc.py \
|
|
--server-addr localhost \
|
|
--server-port 8001 \
|
|
--model-name cosyvoice2_dit \
|
|
--num-tasks $num_task \
|
|
--mode $mode \
|
|
--huggingface-dataset yuekai/seed_tts_cosy2 \
|
|
--log-dir ./log_single_gpu_concurrent_tasks_${num_task}_${mode}_bls_${BLS_INSTANCE_NUM}
|
|
|
|
fi
|
|
|
|
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
|
echo "stage 5: Offline TTS (Cosyvoice2 LLM + Step-Audio2-mini DiT Token2Wav) inference using a single python script"
|
|
|
|
datasets=(wenetspeech4tts) # wenetspeech4tts, test_zh, zero_shot_zh
|
|
backend=trtllm # hf, trtllm, vllm, trtllm-serve
|
|
|
|
batch_sizes=(16)
|
|
token2wav_batch_size=1
|
|
|
|
for batch_size in ${batch_sizes[@]}; do
|
|
for dataset in ${datasets[@]}; do
|
|
output_dir=./${dataset}_${backend}_llm_batch_size_${batch_size}_token2wav_batch_size_${token2wav_batch_size}
|
|
CUDA_VISIBLE_DEVICES=1 \
|
|
python3 offline_inference.py \
|
|
--output-dir $output_dir \
|
|
--llm-model-name-or-path $huggingface_model_local_dir \
|
|
--token2wav-path $step_audio_model_dir/token2wav \
|
|
--backend $backend \
|
|
--batch-size $batch_size --token2wav-batch-size $token2wav_batch_size \
|
|
--engine-dir $trt_engines_dir \
|
|
--split-name ${dataset} || exit 1
|
|
done
|
|
done
|
|
fi
|
|
|
|
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
|
echo "Running Step-Audio2-mini DiT Token2Wav inference using a single python script"
|
|
export CUDA_VISIBLE_DEVICES=1
|
|
# Note: Using pre-computed cosyvoice2 tokens
|
|
python3 streaming_inference.py --enable-trt --strategy equal # equal, exponential
|
|
# Offline Token2wav inference
|
|
python3 token2wav_dit.py --enable-trt
|
|
fi
|
|
|
|
|
|
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
|
echo "Disaggregated Server: LLM and Token2wav on different GPUs"
|
|
echo "Starting LLM server on GPU 0"
|
|
export CUDA_VISIBLE_DEVICES=0
|
|
mpirun -np 1 --allow-run-as-root --oversubscribe trtllm-serve serve --tokenizer $huggingface_model_local_dir $trt_engines_dir --max_batch_size 64 --kv_cache_free_gpu_memory_fraction 0.4 &
|
|
echo "Starting Token2wav server on GPUs 1-3"
|
|
Token2wav_num_gpus=3
|
|
http_port=17000
|
|
grpc_port=18000
|
|
metrics_port=16000
|
|
for i in $(seq 0 $(($Token2wav_num_gpus - 1))); do
|
|
echo "Starting server on GPU $i"
|
|
http_port=$((http_port + 1))
|
|
grpc_port=$((grpc_port + 1))
|
|
metrics_port=$((metrics_port + 1))
|
|
# Two instances of Token2wav server on the same GPU
|
|
CUDA_VISIBLE_DEVICES=$(($i + 1)) tritonserver --model-repository $model_repo --http-port $http_port --grpc-port $grpc_port --metrics-port $metrics_port &
|
|
http_port=$((http_port + 1))
|
|
grpc_port=$((grpc_port + 1))
|
|
metrics_port=$((metrics_port + 1))
|
|
CUDA_VISIBLE_DEVICES=$(($i + 1)) tritonserver --model-repository $model_repo --http-port $http_port --grpc-port $grpc_port --metrics-port $metrics_port &
|
|
done
|
|
wait
|
|
fi
|
|
|
|
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
|
echo "Running benchmark client for Disaggregated Server"
|
|
per_gpu_instances=2
|
|
mode=streaming
|
|
BLS_INSTANCE_NUM=$bls_instance_num
|
|
Token2wav_num_gpus=(1 2 3)
|
|
concurrent_tasks=(1 2 3 4 5 6)
|
|
for n_gpu in ${Token2wav_num_gpus[@]}; do
|
|
echo "Test 1 GPU for LLM server and $n_gpu GPUs for Token2wav servers"
|
|
for concurrent_task in ${concurrent_tasks[@]}; do
|
|
num_instances=$((per_gpu_instances * n_gpu))
|
|
for i in $(seq 1 $num_instances); do
|
|
port=$(($i + 18000))
|
|
python3 client_grpc.py \
|
|
--server-addr localhost \
|
|
--server-port $port \
|
|
--model-name cosyvoice2_dit \
|
|
--num-tasks $concurrent_task \
|
|
--mode $mode \
|
|
--huggingface-dataset yuekai/seed_tts_cosy2 \
|
|
--log-dir ./log_disagg_concurrent_tasks_${concurrent_task}_per_instance_total_token2wav_instances_${num_instances}_port_${port} &
|
|
done
|
|
wait
|
|
done
|
|
done
|
|
fi |