mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-05 01:49:25 +08:00
139 lines
5.0 KiB
Python
139 lines
5.0 KiB
Python
|
|
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import argparse
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm.logger import logger
|
|
|
|
from tensorrt_llm.runtime import ModelRunnerCpp
|
|
from transformers import AutoTokenizer
|
|
|
|
|
|
def parse_arguments(args=None):
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
'--input_text',
|
|
type=str,
|
|
nargs='+',
|
|
default=["Born in north-east France, Soyer trained as a"])
|
|
parser.add_argument('--tokenizer_dir', type=str, default="meta-llama/Meta-Llama-3-8B-Instruct")
|
|
parser.add_argument('--engine_dir', type=str, default="meta-llama/Meta-Llama-3-8B-Instruct")
|
|
parser.add_argument('--log_level', type=str, default="debug")
|
|
parser.add_argument('--kv_cache_free_gpu_memory_fraction', type=float, default=0.6)
|
|
parser.add_argument('--temperature', type=float, default=0.8)
|
|
parser.add_argument('--top_k', type=int, default=50)
|
|
parser.add_argument('--top_p', type=float, default=0.95)
|
|
|
|
return parser.parse_args(args=args)
|
|
|
|
|
|
def parse_input(tokenizer,
|
|
input_text=None,
|
|
prompt_template=None):
|
|
batch_input_ids = []
|
|
for curr_text in input_text:
|
|
if prompt_template is not None:
|
|
curr_text = prompt_template.format(input_text=curr_text)
|
|
input_ids = tokenizer.encode(
|
|
curr_text)
|
|
batch_input_ids.append(input_ids)
|
|
|
|
batch_input_ids = [
|
|
torch.tensor(x, dtype=torch.int32) for x in batch_input_ids
|
|
]
|
|
|
|
logger.debug(f"Input token ids (batch_size = {len(batch_input_ids)}):")
|
|
for i, input_ids in enumerate(batch_input_ids):
|
|
logger.debug(f"Request {i}: {input_ids.tolist()}")
|
|
|
|
return batch_input_ids
|
|
|
|
|
|
def main(args):
|
|
runtime_rank = tensorrt_llm.mpi_rank()
|
|
logger.set_level(args.log_level)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_dir)
|
|
prompt_template = "<|sos|>{input_text}<|task_id|>"
|
|
end_id = tokenizer.convert_tokens_to_ids("<|eos1|>")
|
|
|
|
batch_input_ids = parse_input(tokenizer=tokenizer,
|
|
input_text=args.input_text,
|
|
prompt_template=prompt_template)
|
|
|
|
input_lengths = [x.size(0) for x in batch_input_ids]
|
|
|
|
runner_kwargs = dict(
|
|
engine_dir=args.engine_dir,
|
|
rank=runtime_rank,
|
|
max_output_len=1024,
|
|
enable_context_fmha_fp32_acc=False,
|
|
max_batch_size=len(batch_input_ids),
|
|
max_input_len=max(input_lengths),
|
|
kv_cache_free_gpu_memory_fraction=args.kv_cache_free_gpu_memory_fraction,
|
|
cuda_graph_mode=False,
|
|
gather_generation_logits=False,
|
|
)
|
|
|
|
runner = ModelRunnerCpp.from_dir(**runner_kwargs)
|
|
|
|
with torch.no_grad():
|
|
outputs = runner.generate(
|
|
batch_input_ids=batch_input_ids,
|
|
max_new_tokens=1024,
|
|
end_id=end_id,
|
|
pad_id=end_id,
|
|
temperature=args.temperature,
|
|
top_k=args.top_k,
|
|
top_p=args.top_p,
|
|
num_return_sequences=1,
|
|
repetition_penalty=1.1,
|
|
random_seed=42,
|
|
streaming=False,
|
|
output_sequence_lengths=True,
|
|
output_generation_logits=False,
|
|
return_dict=True,
|
|
return_all_generated_tokens=False)
|
|
torch.cuda.synchronize()
|
|
output_ids, sequence_lengths = outputs["output_ids"], outputs["sequence_lengths"]
|
|
num_output_sents, num_beams, _ = output_ids.size()
|
|
assert num_beams == 1
|
|
beam = 0
|
|
batch_size = len(input_lengths)
|
|
num_return_sequences = num_output_sents // batch_size
|
|
assert num_return_sequences == 1
|
|
for i in range(batch_size * num_return_sequences):
|
|
batch_idx = i // num_return_sequences
|
|
seq_idx = i % num_return_sequences
|
|
inputs = output_ids[i][0][:input_lengths[batch_idx]].tolist()
|
|
input_text = tokenizer.decode(inputs)
|
|
print(f'Input [Text {batch_idx}]: \"{input_text}\"')
|
|
output_begin = input_lengths[batch_idx]
|
|
output_end = sequence_lengths[i][beam]
|
|
outputs = output_ids[i][beam][output_begin:output_end].tolist()
|
|
output_text = tokenizer.decode(outputs)
|
|
print(f'Output [Text {batch_idx}]: \"{output_text}\"')
|
|
logger.debug(str(outputs))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = parse_arguments()
|
|
main(args)
|