mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 17:39:25 +08:00
- Simplified estimator count retrieval in CosyVoice and CosyVoice2 classes to directly access the configs dictionary. - Adjusted memory pool limit in the ONNX to TensorRT conversion function from 8GB to 1GB for optimized resource management.
215 lines
13 KiB
Python
215 lines
13 KiB
Python
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import time
|
|
from typing import Generator
|
|
from tqdm import tqdm
|
|
from hyperpyyaml import load_hyperpyyaml
|
|
from modelscope import snapshot_download
|
|
import torch
|
|
from cosyvoice.cli.frontend import CosyVoiceFrontEnd
|
|
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model, VllmCosyVoice2Model
|
|
from cosyvoice.utils.file_utils import logging
|
|
from cosyvoice.utils.class_utils import get_model_type
|
|
|
|
|
|
class CosyVoice:
|
|
|
|
def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False):
|
|
self.instruct = True if '-Instruct' in model_dir else False
|
|
self.model_dir = model_dir
|
|
self.fp16 = fp16
|
|
if not os.path.exists(model_dir):
|
|
model_dir = snapshot_download(model_dir)
|
|
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
|
|
configs = load_hyperpyyaml(f)
|
|
assert get_model_type(configs) != CosyVoice2Model, 'do not use {} for CosyVoice initialization!'.format(model_dir)
|
|
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
|
configs['feat_extractor'],
|
|
'{}/campplus.onnx'.format(model_dir),
|
|
'{}/speech_tokenizer_v1.onnx'.format(model_dir),
|
|
'{}/spk2info.pt'.format(model_dir),
|
|
configs['allowed_special'])
|
|
self.sample_rate = configs['sample_rate']
|
|
if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or fp16 is True):
|
|
load_jit, load_trt, fp16 = False, False, False
|
|
logging.warning('no cuda device, set load_jit/load_trt/fp16 to False')
|
|
self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'], fp16)
|
|
self.model.load('{}/llm.pt'.format(model_dir),
|
|
'{}/flow.pt'.format(model_dir),
|
|
'{}/hift.pt'.format(model_dir))
|
|
if load_jit:
|
|
self.model.load_jit('{}/llm.text_encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
|
|
'{}/llm.llm.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
|
|
'{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
|
|
if load_trt:
|
|
self.estimator_count = configs.get('estimator_count', 1)
|
|
self.model.load_trt('{}/flow.decoder.estimator.{}.mygpu.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
|
|
'{}/flow.decoder.estimator.fp32.onnx'.format(model_dir),
|
|
self.fp16, self.estimator_count)
|
|
del configs
|
|
|
|
|
|
def list_available_spks(self):
|
|
spks = list(self.frontend.spk2info.keys())
|
|
return spks
|
|
|
|
def add_spk_info(self, spk_id, spk_info):
|
|
self.frontend.add_spk_info(spk_id, spk_info)
|
|
|
|
def inference_sft(self, tts_text, spk_id, stream=False, speed=1.0, text_frontend=True):
|
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
|
model_input = self.frontend.frontend_sft(i, spk_id)
|
|
start_time = time.time()
|
|
logging.info('synthesis text {}'.format(i))
|
|
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
|
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
|
yield model_output
|
|
start_time = time.time()
|
|
|
|
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
|
prompt_text = self.frontend.text_normalize(prompt_text, split=False, text_frontend=text_frontend)
|
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
|
if (not isinstance(i, Generator)) and len(i) < 0.5 * len(prompt_text):
|
|
logging.warning('synthesis text {} too short than prompt text {}, this may lead to bad performance'.format(i, prompt_text))
|
|
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k, self.sample_rate)
|
|
start_time = time.time()
|
|
logging.info('synthesis text {}'.format(i))
|
|
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
|
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
|
yield model_output
|
|
start_time = time.time()
|
|
|
|
def inference_zero_shot_by_spk_id(self, tts_text, spk_id, stream=False, speed=1.0, text_frontend=True):
|
|
"""使用预定义的说话人执行 zero_shot 推理"""
|
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
|
model_input = self.frontend.frontend_zero_shot_by_spk_id(i, spk_id)
|
|
start_time = time.time()
|
|
last_time = start_time
|
|
chunk_index = 0
|
|
logging.info('synthesis text {}'.format(i))
|
|
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
|
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
|
logging.info('yield speech index:{}, len {:.2f}, rtf {:.3f}, cost {:.3f}s, all cost time {:.3f}s'.format(
|
|
chunk_index, speech_len, (time.time()-last_time)/speech_len, time.time()-last_time, time.time()-start_time))
|
|
yield model_output
|
|
last_time = time.time()
|
|
chunk_index += 1
|
|
|
|
def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
|
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate)
|
|
start_time = time.time()
|
|
logging.info('synthesis text {}'.format(i))
|
|
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
|
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
|
yield model_output
|
|
start_time = time.time()
|
|
|
|
def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0, text_frontend=True):
|
|
assert isinstance(self.model, CosyVoiceModel), 'inference_instruct is only implemented for CosyVoice!'
|
|
if self.instruct is False:
|
|
raise ValueError('{} do not support instruct inference'.format(self.model_dir))
|
|
instruct_text = self.frontend.text_normalize(instruct_text, split=False, text_frontend=text_frontend)
|
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
|
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
|
|
start_time = time.time()
|
|
logging.info('synthesis text {}'.format(i))
|
|
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
|
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
|
yield model_output
|
|
start_time = time.time()
|
|
|
|
def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0):
|
|
model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k, self.sample_rate)
|
|
start_time = time.time()
|
|
for model_output in self.model.vc(**model_input, stream=stream, speed=speed):
|
|
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
|
yield model_output
|
|
start_time = time.time()
|
|
|
|
|
|
class CosyVoice2(CosyVoice):
|
|
|
|
def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False, use_vllm=False):
|
|
self.instruct = True if '-Instruct' in model_dir else False
|
|
self.model_dir = model_dir
|
|
self.fp16 = fp16
|
|
if not os.path.exists(model_dir):
|
|
model_dir = snapshot_download(model_dir)
|
|
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
|
|
configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')})
|
|
assert get_model_type(configs) == CosyVoice2Model, 'do not use {} for CosyVoice2 initialization!'.format(model_dir)
|
|
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
|
configs['feat_extractor'],
|
|
'{}/campplus.onnx'.format(model_dir),
|
|
'{}/speech_tokenizer_v2.onnx'.format(model_dir),
|
|
'{}/spk2info.pt'.format(model_dir),
|
|
configs['allowed_special'])
|
|
self.sample_rate = configs['sample_rate']
|
|
if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or fp16 is True):
|
|
load_jit, load_trt, fp16 = False, False, False
|
|
logging.warning('no cuda device, set load_jit/load_trt/fp16 to False')
|
|
if use_vllm:
|
|
try:
|
|
self.model = VllmCosyVoice2Model(model_dir, configs['flow'], configs['hift'], fp16)
|
|
except Exception as e:
|
|
logging.warning(f'use vllm inference failed. \n{e}')
|
|
raise e
|
|
else:
|
|
self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'], fp16)
|
|
self.model.load('{}/llm.pt'.format(model_dir),
|
|
'{}/flow.pt'.format(model_dir),
|
|
'{}/hift.pt'.format(model_dir))
|
|
if load_jit:
|
|
self.model.load_jit('{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
|
|
if load_trt:
|
|
self.estimator_count = configs.get('estimator_count', 1)
|
|
self.model.load_trt('{}/flow.decoder.estimator.{}.mygpu.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
|
|
'{}/flow.decoder.estimator.fp32.onnx'.format(model_dir),
|
|
self.fp16, self.estimator_count)
|
|
del configs
|
|
|
|
|
|
def inference_instruct(self, *args, **kwargs):
|
|
raise NotImplementedError('inference_instruct is not implemented for CosyVoice2!')
|
|
|
|
def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
|
assert isinstance(self.model, CosyVoice2Model), 'inference_instruct2 is only implemented for CosyVoice2!'
|
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
|
model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate)
|
|
start_time = time.time()
|
|
logging.info('synthesis text {}'.format(i))
|
|
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
|
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
|
yield model_output
|
|
start_time = time.time()
|
|
|
|
def inference_instruct2_by_spk_id(self, tts_text, instruct_text, spk_id, stream=False, speed=1.0, text_frontend=True):
|
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
|
model_input = self.frontend.frontend_instruct2_by_spk_id(i, instruct_text, spk_id)
|
|
start_time = time.time()
|
|
logging.info('synthesis text {}'.format(i))
|
|
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
|
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
|
yield model_output
|
|
start_time = time.time()
|