# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Generator import torch import numpy as np import threading import time from torch.nn import functional as F from contextlib import nullcontext import uuid from cosyvoice.utils.common import fade_in_out from cosyvoice.utils.file_utils import convert_onnx_to_trt class CosyVoiceModel: def __init__(self, llm: torch.nn.Module, flow: torch.nn.Module, hift: torch.nn.Module, fp16: bool): self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.llm = llm self.flow = flow self.hift = hift self.fp16 = fp16 if self.fp16 is True: self.llm.half() self.flow.half() self.token_min_hop_len = 2 * self.flow.input_frame_rate self.token_max_hop_len = 4 * self.flow.input_frame_rate self.token_overlap_len = 20 # mel fade in out self.mel_overlap_len = int(self.token_overlap_len / self.flow.input_frame_rate * 22050 / 256) self.mel_window = np.hamming(2 * self.mel_overlap_len) # hift cache self.mel_cache_len = 20 self.source_cache_len = int(self.mel_cache_len * 256) # speech fade in out self.speech_window = np.hamming(2 * self.source_cache_len) # rtf and decoding related self.stream_scale_factor = 1 assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf' self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext() self.lock = threading.Lock() # dict used to store session related variable self.tts_speech_token_dict = {} self.llm_end_dict = {} self.mel_overlap_dict = {} self.flow_cache_dict = {} self.hift_cache_dict = {} def load(self, llm_model, flow_model, hift_model): self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True) self.llm.to(self.device).eval() self.flow.load_state_dict(torch.load(flow_model, map_location=self.device), strict=True) self.flow.to(self.device).eval() # in case hift_model is a hifigan model hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(hift_model, map_location=self.device).items()} self.hift.load_state_dict(hift_state_dict, strict=True) self.hift.to(self.device).eval() def load_jit(self, llm_text_encoder_model, llm_llm_model, flow_encoder_model): llm_text_encoder = torch.jit.load(llm_text_encoder_model, map_location=self.device) self.llm.text_encoder = llm_text_encoder llm_llm = torch.jit.load(llm_llm_model, map_location=self.device) self.llm.llm = llm_llm flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device) self.flow.encoder = flow_encoder def load_trt(self, flow_decoder_estimator_model, flow_decoder_onnx_model, fp16): assert torch.cuda.is_available(), 'tensorrt only supports gpu!' if not os.path.exists(flow_decoder_estimator_model): convert_onnx_to_trt(flow_decoder_estimator_model, self.get_trt_kwargs(), flow_decoder_onnx_model, fp16) if os.path.getsize(flow_decoder_estimator_model) == 0: raise ValueError('{} is empty file, delete it and export again!'.format(flow_decoder_estimator_model)) del self.flow.decoder.estimator import tensorrt as trt with open(flow_decoder_estimator_model, 'rb') as f: self.flow.decoder.estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read()) assert self.flow.decoder.estimator_engine is not None, 'failed to load trt {}'.format(flow_decoder_estimator_model) self.flow.decoder.estimator = self.flow.decoder.estimator_engine.create_execution_context() def get_trt_kwargs(self): min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2, 80, 4)] opt_shape = [(2, 80, 200), (2, 1, 200), (2, 80, 200), (2, 80, 200)] max_shape = [(2, 80, 3000), (2, 1, 3000), (2, 80, 3000), (2, 80, 3000)] input_names = ["x", "mask", "mu", "cond"] return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names} def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid): with self.llm_context, torch.cuda.amp.autocast(self.fp16): if isinstance(text, Generator): assert isinstance(self, CosyVoice2Model), 'streaming input text is only implemented for CosyVoice2!' for i in self.llm.inference_bistream(text=text, prompt_text=prompt_text.to(self.device), prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device), prompt_speech_token=llm_prompt_speech_token.to(self.device), prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device), embedding=llm_embedding.to(self.device)): self.tts_speech_token_dict[uuid].append(i) else: for i in self.llm.inference(text=text.to(self.device), text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device), prompt_text=prompt_text.to(self.device), prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device), prompt_speech_token=llm_prompt_speech_token.to(self.device), prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device), embedding=llm_embedding.to(self.device)): self.tts_speech_token_dict[uuid].append(i) self.llm_end_dict[uuid] = True def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0): with torch.cuda.amp.autocast(self.fp16): tts_mel, self.flow_cache_dict[uuid] = self.flow.inference(token=token.to(self.device), token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device), prompt_token=prompt_token.to(self.device), prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device), prompt_feat=prompt_feat.to(self.device), prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device), embedding=embedding.to(self.device), flow_cache=self.flow_cache_dict[uuid]) # mel overlap fade in out if self.mel_overlap_dict[uuid].shape[2] != 0: tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window) # append hift cache if self.hift_cache_dict[uuid] is not None: hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source'] tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2) else: hift_cache_source = torch.zeros(1, 1, 0) # keep overlap mel and hift cache if finalize is False: self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:] tts_mel = tts_mel[:, :, :-self.mel_overlap_len] tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source) if self.hift_cache_dict[uuid] is not None: tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window) self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:], 'source': tts_source[:, :, -self.source_cache_len:], 'speech': tts_speech[:, -self.source_cache_len:]} tts_speech = tts_speech[:, :-self.source_cache_len] else: if speed != 1.0: assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode' tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear') tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source) if self.hift_cache_dict[uuid] is not None: tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window) return tts_speech def tts(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192), prompt_text=torch.zeros(1, 0, dtype=torch.int32), llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs): # this_uuid is used to track variables related to this inference thread this_uuid = str(uuid.uuid1()) with self.lock: self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False self.hift_cache_dict[this_uuid] = None self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0) self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2) p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid)) p.start() if stream is True: token_hop_len = self.token_min_hop_len while True: time.sleep(0.1) if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len: this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \ .unsqueeze(dim=0) this_tts_speech = self.token2wav(token=this_tts_speech_token, prompt_token=flow_prompt_speech_token, prompt_feat=prompt_speech_feat, embedding=flow_embedding, uuid=this_uuid, finalize=False) yield {'tts_speech': this_tts_speech.cpu()} with self.lock: self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:] # increase token_hop_len for better speech quality token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor)) if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len: break p.join() # deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0) this_tts_speech = self.token2wav(token=this_tts_speech_token, prompt_token=flow_prompt_speech_token, prompt_feat=prompt_speech_feat, embedding=flow_embedding, uuid=this_uuid, finalize=True) yield {'tts_speech': this_tts_speech.cpu()} else: # deal with all tokens p.join() this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0) this_tts_speech = self.token2wav(token=this_tts_speech_token, prompt_token=flow_prompt_speech_token, prompt_feat=prompt_speech_feat, embedding=flow_embedding, uuid=this_uuid, finalize=True, speed=speed) yield {'tts_speech': this_tts_speech.cpu()} with self.lock: self.tts_speech_token_dict.pop(this_uuid) self.llm_end_dict.pop(this_uuid) self.mel_overlap_dict.pop(this_uuid) self.hift_cache_dict.pop(this_uuid) self.flow_cache_dict.pop(this_uuid) torch.cuda.empty_cache() def vc(self, source_speech_token, flow_prompt_speech_token, prompt_speech_feat, flow_embedding, stream=False, speed=1.0, **kwargs): # this_uuid is used to track variables related to this inference thread this_uuid = str(uuid.uuid1()) with self.lock: self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = source_speech_token.flatten().tolist(), True self.hift_cache_dict[this_uuid] = None self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0) self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2) if stream is True: token_hop_len = self.token_min_hop_len while True: if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len: this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \ .unsqueeze(dim=0) this_tts_speech = self.token2wav(token=this_tts_speech_token, prompt_token=flow_prompt_speech_token, prompt_feat=prompt_speech_feat, embedding=flow_embedding, uuid=this_uuid, finalize=False) yield {'tts_speech': this_tts_speech.cpu()} with self.lock: self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:] # increase token_hop_len for better speech quality token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor)) if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len: break # deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0) this_tts_speech = self.token2wav(token=this_tts_speech_token, prompt_token=flow_prompt_speech_token, prompt_feat=prompt_speech_feat, embedding=flow_embedding, uuid=this_uuid, finalize=True) yield {'tts_speech': this_tts_speech.cpu()} else: # deal with all tokens this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0) this_tts_speech = self.token2wav(token=this_tts_speech_token, prompt_token=flow_prompt_speech_token, prompt_feat=prompt_speech_feat, embedding=flow_embedding, uuid=this_uuid, finalize=True, speed=speed) yield {'tts_speech': this_tts_speech.cpu()} with self.lock: self.tts_speech_token_dict.pop(this_uuid) self.llm_end_dict.pop(this_uuid) self.mel_overlap_dict.pop(this_uuid) self.hift_cache_dict.pop(this_uuid) self.flow_cache_dict.pop(this_uuid) torch.cuda.empty_cache() class CosyVoice2Model(CosyVoiceModel): def __init__(self, llm: torch.nn.Module, flow: torch.nn.Module, hift: torch.nn.Module, fp16: bool): self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.llm = llm self.flow = flow self.hift = hift self.fp16 = fp16 if self.fp16 is True: self.llm.half() self.flow.half() self.token_hop_len = self.flow.encoder.static_chunk_size # flow decoder required_cache_size self.flow_decoder_required_cache_size = self.flow.decoder.estimator.num_decoding_left_chunks * self.flow.decoder.estimator.static_chunk_size # hift cache self.mel_cache_len = 8 self.source_cache_len = int(self.mel_cache_len * 480) # speech fade in out self.speech_window = np.hamming(2 * self.source_cache_len) # rtf and decoding related self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext() self.lock = threading.Lock() # dict used to store session related variable self.tts_speech_token_dict = {} self.llm_end_dict = {} self.flow_cache_dict = {} self.hift_cache_dict = {} def init_flow_cache(self): encoder_cache = {'offset': 0, 'pre_lookahead_layer_conv2_cache': torch.zeros(1, 512, 2).to(self.device), 'encoders_kv_cache': torch.zeros(6, 1, 8, 0, 64 * 2).to(self.device), 'upsample_offset': 0, 'upsample_conv_cache': torch.zeros(1, 512, 4).to(self.device), 'upsample_kv_cache': torch.zeros(4, 1, 8, 0, 64 * 2).to(self.device)} decoder_cache = {'offset': 0, 'down_blocks_conv_cache': torch.zeros(10, 1, 2, 832, 2).to(self.device), 'down_blocks_kv_cache': torch.zeros(10, 1, 4, 2, 0, 512, 2).to(self.device), 'mid_blocks_conv_cache': torch.zeros(10, 12, 2, 512, 2).to(self.device), 'mid_blocks_kv_cache': torch.zeros(10, 12, 4, 2, 0, 512, 2).to(self.device), 'up_blocks_conv_cache': torch.zeros(10, 1, 2, 1024, 2).to(self.device), 'up_blocks_kv_cache': torch.zeros(10, 1, 4, 2, 0, 512, 2).to(self.device), 'final_blocks_conv_cache': torch.zeros(10, 2, 256, 2).to(self.device)} if self.fp16 is True: for cache in [encoder_cache, decoder_cache]: for k, v in cache.items(): if isinstance(v, torch.Tensor): cache[k] = v.half() cache = {'encoder_cache': encoder_cache, 'decoder_cache': decoder_cache} return cache def trim_flow_cache(self, cache): if cache['decoder_cache']['down_blocks_kv_cache'].size(4) > self.flow_decoder_required_cache_size: cache['decoder_cache']['down_blocks_kv_cache'] = cache['decoder_cache']['down_blocks_kv_cache'][:, :, :, :, -self.flow_decoder_required_cache_size:] cache['decoder_cache']['mid_blocks_kv_cache'] = cache['decoder_cache']['mid_blocks_kv_cache'][:, :, :, :, -self.flow_decoder_required_cache_size:] cache['decoder_cache']['up_blocks_kv_cache'] = cache['decoder_cache']['up_blocks_kv_cache'][:, :, :, :, -self.flow_decoder_required_cache_size:] return cache def load_jit(self, flow_encoder_model): flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device) self.flow.encoder = flow_encoder def get_trt_kwargs(self): min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2, 80, 4), (1, 4, 2, 0, 512, 2), (12, 4, 2, 0, 512, 2), (1, 4, 2, 0, 512, 2)] opt_shape = [(2, 80, 200), (2, 1, 200), (2, 80, 200), (2, 80, 200), (1, 4, 2, 100, 512, 2), (12, 4, 2, 100, 512, 2), (1, 4, 2, 100, 512, 2)] max_shape = [(2, 80, 1500), (2, 1, 1500), (2, 80, 1500), (2, 80, 1500), (1, 4, 2, 200, 512, 2), (12, 4, 2, 200, 512, 2), (1, 4, 2, 200, 512, 2)] input_names = ["x", "mask", "mu", "cond", 'down_blocks_kv_cache', 'mid_blocks_kv_cache', 'up_blocks_kv_cache'] return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names} def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0): with torch.cuda.amp.autocast(self.fp16): tts_mel, self.flow_cache_dict[uuid] = self.flow.inference(token=token.to(self.device), token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device), prompt_token=prompt_token.to(self.device), prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device), prompt_feat=prompt_feat.to(self.device), prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device), embedding=embedding.to(self.device), cache=self.flow_cache_dict[uuid], finalize=finalize) self.flow_cache_dict[uuid] = self.trim_flow_cache(self.flow_cache_dict[uuid]) # append hift cache if self.hift_cache_dict[uuid] is not None: hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source'] tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2) else: hift_cache_source = torch.zeros(1, 1, 0) # keep overlap mel and hift cache if finalize is False: tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source) if self.hift_cache_dict[uuid] is not None: tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window) self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:], 'source': tts_source[:, :, -self.source_cache_len:], 'speech': tts_speech[:, -self.source_cache_len:]} tts_speech = tts_speech[:, :-self.source_cache_len] else: if speed != 1.0: assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode' tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear') tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source) if self.hift_cache_dict[uuid] is not None: tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window) return tts_speech def tts(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192), prompt_text=torch.zeros(1, 0, dtype=torch.int32), llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs): # this_uuid is used to track variables related to this inference thread this_uuid = str(uuid.uuid1()) # NOTE flow model is only trained with static_chunk_size, so we need to trim flow prompt n_chunk = int(flow_prompt_speech_token.size(1) / self.token_hop_len) flow_prompt_speech_token = flow_prompt_speech_token[:, :n_chunk * self.token_hop_len] prompt_speech_feat = prompt_speech_feat[:, :n_chunk * self.token_hop_len * 2] with self.lock: self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False self.hift_cache_dict[this_uuid] = None self.flow_cache_dict[this_uuid] = self.init_flow_cache() p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid)) p.start() if stream is True: while True: time.sleep(0.1) if len(self.tts_speech_token_dict[this_uuid]) >= self.token_hop_len + self.flow.pre_lookahead_len: this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:self.token_hop_len + self.flow.pre_lookahead_len]).unsqueeze(dim=0) this_tts_speech = self.token2wav(token=this_tts_speech_token, prompt_token=flow_prompt_speech_token, prompt_feat=prompt_speech_feat, embedding=flow_embedding, uuid=this_uuid, finalize=False) # NOTE in cache inference mode, we only use flow_prompt_speech_token/prompt_speech_feat in first chunk flow_prompt_speech_token = torch.zeros(1, 0, dtype=torch.int32).to(self.device) prompt_speech_feat = torch.zeros(1, 0, 80).to(self.device) yield {'tts_speech': this_tts_speech.cpu()} with self.lock: self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][self.token_hop_len:] if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < self.token_hop_len + self.flow.pre_lookahead_len: break p.join() # deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0) this_tts_speech = self.token2wav(token=this_tts_speech_token, prompt_token=flow_prompt_speech_token, prompt_feat=prompt_speech_feat, embedding=flow_embedding, uuid=this_uuid, finalize=True) yield {'tts_speech': this_tts_speech.cpu()} else: # deal with all tokens p.join() this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0) this_tts_speech = self.token2wav(token=this_tts_speech_token, prompt_token=flow_prompt_speech_token, prompt_feat=prompt_speech_feat, embedding=flow_embedding, uuid=this_uuid, finalize=True, speed=speed) yield {'tts_speech': this_tts_speech.cpu()} with self.lock: self.tts_speech_token_dict.pop(this_uuid) self.llm_end_dict.pop(this_uuid) self.hift_cache_dict.pop(this_uuid) self.flow_cache_dict.pop(this_uuid) torch.cuda.empty_cache()