# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import ast import csv import os from pathlib import Path from typing import List, Optional import numpy as np import torch import tensorrt_llm from tensorrt_llm.logger import logger from tensorrt_llm.runtime import ModelRunnerCpp from transformers import AutoTokenizer def parse_arguments(args=None): parser = argparse.ArgumentParser() parser.add_argument( '--input_text', type=str, nargs='+', default=["Born in north-east France, Soyer trained as a"]) parser.add_argument('--tokenizer_dir', type=str, default="meta-llama/Meta-Llama-3-8B-Instruct") parser.add_argument('--engine_dir', type=str, default="meta-llama/Meta-Llama-3-8B-Instruct") parser.add_argument('--log_level', type=str, default="debug") parser.add_argument('--kv_cache_free_gpu_memory_fraction', type=float, default=0.6) parser.add_argument('--temperature', type=float, default=0.8) parser.add_argument('--top_k', type=int, default=50) parser.add_argument('--top_p', type=float, default=0.95) return parser.parse_args(args=args) def parse_input(tokenizer, input_text=None, prompt_template=None): batch_input_ids = [] for curr_text in input_text: if prompt_template is not None: curr_text = prompt_template.format(input_text=curr_text) input_ids = tokenizer.encode( curr_text) batch_input_ids.append(input_ids) batch_input_ids = [ torch.tensor(x, dtype=torch.int32) for x in batch_input_ids ] logger.debug(f"Input token ids (batch_size = {len(batch_input_ids)}):") for i, input_ids in enumerate(batch_input_ids): logger.debug(f"Request {i}: {input_ids.tolist()}") return batch_input_ids def main(args): runtime_rank = tensorrt_llm.mpi_rank() logger.set_level(args.log_level) tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_dir) prompt_template = "<|sos|>{input_text}<|task_id|>" end_id = tokenizer.convert_tokens_to_ids("<|eos1|>") batch_input_ids = parse_input(tokenizer=tokenizer, input_text=args.input_text, prompt_template=prompt_template) input_lengths = [x.size(0) for x in batch_input_ids] runner_kwargs = dict( engine_dir=args.engine_dir, rank=runtime_rank, max_output_len=1024, enable_context_fmha_fp32_acc=False, max_batch_size=len(batch_input_ids), max_input_len=max(input_lengths), kv_cache_free_gpu_memory_fraction=args.kv_cache_free_gpu_memory_fraction, cuda_graph_mode=False, gather_generation_logits=False, ) runner = ModelRunnerCpp.from_dir(**runner_kwargs) with torch.no_grad(): outputs = runner.generate( batch_input_ids=batch_input_ids, max_new_tokens=1024, end_id=end_id, pad_id=end_id, temperature=args.temperature, top_k=args.top_k, top_p=args.top_p, num_return_sequences=1, repetition_penalty=1.1, random_seed=42, streaming=False, output_sequence_lengths=True, output_generation_logits=False, return_dict=True, return_all_generated_tokens=False) torch.cuda.synchronize() output_ids, sequence_lengths = outputs["output_ids"], outputs["sequence_lengths"] num_output_sents, num_beams, _ = output_ids.size() assert num_beams == 1 beam = 0 batch_size = len(input_lengths) num_return_sequences = num_output_sents // batch_size assert num_return_sequences == 1 for i in range(batch_size * num_return_sequences): batch_idx = i // num_return_sequences seq_idx = i % num_return_sequences inputs = output_ids[i][0][:input_lengths[batch_idx]].tolist() input_text = tokenizer.decode(inputs) print(f'Input [Text {batch_idx}]: \"{input_text}\"') output_begin = input_lengths[batch_idx] output_end = sequence_lengths[i][beam] outputs = output_ids[i][beam][output_begin:output_end].tolist() output_text = tokenizer.decode(outputs) print(f'Output [Text {batch_idx}]: \"{output_text}\"') logger.debug(str(outputs)) if __name__ == '__main__': args = parse_arguments() main(args)