#!/usr/bin/env python3 # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import torch import torchaudio from tqdm import tqdm import onnxruntime import torchaudio.compliance.kaldi as kaldi from queue import Queue, Empty from threading import Thread class ExtractEmbedding: def __init__(self, model_path: str, queue: Queue, out_queue: Queue): self.model_path = model_path self.queue = queue self.out_queue = out_queue self.is_run = True def run(self): self.consumer_thread = Thread(target=self.consumer) self.consumer_thread.start() def stop(self): self.is_run = False self.consumer_thread.join() def consumer(self): option = onnxruntime.SessionOptions() option.graph_optimization_level = ( onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL ) option.intra_op_num_threads = 1 providers = ["CPUExecutionProvider"] ort_session = onnxruntime.InferenceSession( self.model_path, sess_options=option, providers=providers ) while self.is_run: try: utt, wav_file = self.queue.get(timeout=1) audio, sample_rate = torchaudio.load(wav_file) if sample_rate != 16000: audio = torchaudio.transforms.Resample( orig_freq=sample_rate, new_freq=16000 )(audio) feat = kaldi.fbank( audio, num_mel_bins=80, dither=0, sample_frequency=16000 ) feat = feat - feat.mean(dim=0, keepdim=True) embedding = ( ort_session.run( None, { ort_session.get_inputs()[0] .name: feat.unsqueeze(dim=0) .cpu() .numpy() }, )[0] .flatten() .tolist() ) self.out_queue.put((utt, embedding)) except Empty: self.is_run = False break def main(args): utt2wav, utt2spk = {}, {} with open("{}/wav.scp".format(args.dir)) as f: for l in f: l = l.replace("\n", "").split() utt2wav[l[0]] = l[1] with open("{}/utt2spk".format(args.dir)) as f: for l in f: l = l.replace("\n", "").split() utt2spk[l[0]] = l[1] input_queue = Queue() output_queue = Queue() consumers = [ ExtractEmbedding(args.onnx_path, input_queue, output_queue) for _ in range(args.num_thread) ] utt2embedding, spk2embedding = {}, {} for utt in tqdm(utt2wav.keys(), desc="Load data"): input_queue.put((utt, utt2wav[utt])) for c in consumers: c.run() with tqdm(desc="Process data: ", total=len(utt2wav)) as pbar: while any([c.is_run for c in consumers]): try: utt, embedding = output_queue.get(timeout=1) utt2embedding[utt] = embedding spk = utt2spk[utt] if spk not in spk2embedding: spk2embedding[spk] = [] spk2embedding[spk].append(embedding) pbar.update(1) except Empty: continue for k, v in spk2embedding.items(): spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist() torch.save(utt2embedding, "{}/utt2embedding.pt".format(args.dir)) torch.save(spk2embedding, "{}/spk2embedding.pt".format(args.dir)) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--dir", type=str) parser.add_argument("--onnx_path", type=str) parser.add_argument("--num_thread", type=int, default=8) args = parser.parse_args() main(args)