# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Tuple, Optional, Dict, Any import torch import torch.nn as nn import torch.nn.functional as F from einops import pack, rearrange, repeat from diffusers.models.attention_processor import Attention, AttnProcessor2_0, inspect, logger, deprecate from cosyvoice.utils.common import mask_to_bias from cosyvoice.utils.mask import add_optional_chunk_mask from matcha.models.components.decoder import SinusoidalPosEmb, Block1D, ResnetBlock1D, Downsample1D, TimestepEmbedding, Upsample1D from matcha.models.components.transformer import BasicTransformerBlock, maybe_allow_in_graph class Transpose(torch.nn.Module): def __init__(self, dim0: int, dim1: int): super().__init__() self.dim0 = dim0 self.dim1 = dim1 def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor]: x = torch.transpose(x, self.dim0, self.dim1) return x class CausalConv1d(torch.nn.Conv1d): def __init__( self, in_channels: int, out_channels: int, kernel_size: int, stride: int = 1, dilation: int = 1, groups: int = 1, bias: bool = True, padding_mode: str = 'zeros', device=None, dtype=None ) -> None: super(CausalConv1d, self).__init__(in_channels, out_channels, kernel_size, stride, padding=0, dilation=dilation, groups=groups, bias=bias, padding_mode=padding_mode, device=device, dtype=dtype) assert stride == 1 self.causal_padding = kernel_size - 1 def forward(self, x: torch.Tensor, cache: torch.Tensor = torch.zeros(0, 0, 0)) -> Tuple[torch.Tensor, torch.Tensor]: if cache.size(2) == 0: x = F.pad(x, (self.causal_padding, 0), value=0.0) else: assert cache.size(2) == self.causal_padding x = torch.concat([cache, x], dim=2) cache = x[:, :, -self.causal_padding:] x = super(CausalConv1d, self).forward(x) return x, cache class CausalBlock1D(Block1D): def __init__(self, dim: int, dim_out: int): super(CausalBlock1D, self).__init__(dim, dim_out) self.block = torch.nn.Sequential( CausalConv1d(dim, dim_out, 3), Transpose(1, 2), nn.LayerNorm(dim_out), Transpose(1, 2), nn.Mish(), ) def forward(self, x: torch.Tensor, mask: torch.Tensor, cache: torch.Tensor = torch.zeros(0, 0, 0)) -> Tuple[torch.Tensor, torch.Tensor]: output, cache = self.block[0](x * mask, cache) for i in range(1, len(self.block)): output = self.block[i](output) return output * mask, cache class CausalResnetBlock1D(ResnetBlock1D): def __init__(self, dim: int, dim_out: int, time_emb_dim: int, groups: int = 8): super(CausalResnetBlock1D, self).__init__(dim, dim_out, time_emb_dim, groups) self.block1 = CausalBlock1D(dim, dim_out) self.block2 = CausalBlock1D(dim_out, dim_out) def forward(self, x: torch.Tensor, mask: torch.Tensor, time_emb: torch.Tensor, block1_cache: torch.Tensor = torch.zeros(0, 0, 0), block2_cache: torch.Tensor = torch.zeros(0, 0, 0) ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: h, block1_cache = self.block1(x, mask, block1_cache) h += self.mlp(time_emb).unsqueeze(-1) h, block2_cache = self.block2(h, mask, block2_cache) output = h + self.res_conv(x * mask) return output, block1_cache, block2_cache class CausalAttnProcessor2_0(AttnProcessor2_0): r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). """ def __init__(self): super(CausalAttnProcessor2_0, self).__init__() def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, temb: Optional[torch.FloatTensor] = None, cache: torch.Tensor = torch.zeros(0, 0, 0, 0), *args, **kwargs, ) -> Tuple[torch.FloatTensor, torch.Tensor]: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. \ `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: # NOTE do not use attn.prepare_attention_mask as we have already provided the correct attention_mask # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.unsqueeze(dim=1).repeat(1, attn.heads, 1, 1) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key_cache = attn.to_k(encoder_hidden_states) value_cache = attn.to_v(encoder_hidden_states) # NOTE here we judge cache.size(0) instead of cache.size(1), because init_cache has size (2, 0, 512, 2) if cache.size(0) != 0: key = torch.concat([cache[:, :, :, 0], key_cache], dim=1) value = torch.concat([cache[:, :, :, 1], value_cache], dim=1) else: key, value = key_cache, value_cache cache = torch.stack([key_cache, value_cache], dim=3) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states, cache @maybe_allow_in_graph class CausalAttention(Attention): def __init__( self, query_dim: int, cross_attention_dim: Optional[int] = None, heads: int = 8, dim_head: int = 64, dropout: float = 0.0, bias: bool = False, upcast_attention: bool = False, upcast_softmax: bool = False, cross_attention_norm: Optional[str] = None, cross_attention_norm_num_groups: int = 32, qk_norm: Optional[str] = None, added_kv_proj_dim: Optional[int] = None, norm_num_groups: Optional[int] = None, spatial_norm_dim: Optional[int] = None, out_bias: bool = True, scale_qk: bool = True, only_cross_attention: bool = False, eps: float = 1e-5, rescale_output_factor: float = 1.0, residual_connection: bool = False, _from_deprecated_attn_block: bool = False, processor: Optional["AttnProcessor2_0"] = None, out_dim: int = None, ): super(CausalAttention, self).__init__(query_dim, cross_attention_dim, heads, dim_head, dropout, bias, upcast_attention, upcast_softmax, cross_attention_norm, cross_attention_norm_num_groups, qk_norm, added_kv_proj_dim, norm_num_groups, spatial_norm_dim, out_bias, scale_qk, only_cross_attention, eps, rescale_output_factor, residual_connection, _from_deprecated_attn_block, processor, out_dim) processor = CausalAttnProcessor2_0() self.set_processor(processor) def forward( self, hidden_states: torch.FloatTensor, encoder_hidden_states: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, cache: torch.Tensor = torch.zeros(0, 0, 0, 0), **cross_attention_kwargs, ) -> Tuple[torch.Tensor, torch.Tensor]: r""" The forward method of the `Attention` class. Args: hidden_states (`torch.Tensor`): The hidden states of the query. encoder_hidden_states (`torch.Tensor`, *optional*): The hidden states of the encoder. attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied. **cross_attention_kwargs: Additional keyword arguments to pass along to the cross attention. Returns: `torch.Tensor`: The output of the attention layer. """ # The `Attention` class can call different attention processors / attention functions # here we simply pass along all tensors to the selected processor class # For standard processors that are defined here, `**cross_attention_kwargs` is empty attn_parameters = set(inspect.signature(self.processor.__call__).parameters.keys()) unused_kwargs = [k for k, _ in cross_attention_kwargs.items() if k not in attn_parameters] if len(unused_kwargs) > 0: logger.warning( f"cross_attention_kwargs {unused_kwargs} are not expected by {self.processor.__class__.__name__} and will be ignored." ) cross_attention_kwargs = {k: w for k, w in cross_attention_kwargs.items() if k in attn_parameters} return self.processor( self, hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, cache=cache, **cross_attention_kwargs, ) @maybe_allow_in_graph class CausalBasicTransformerBlock(BasicTransformerBlock): def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, dropout=0.0, cross_attention_dim: Optional[int] = None, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, attention_bias: bool = False, only_cross_attention: bool = False, double_self_attention: bool = False, upcast_attention: bool = False, norm_elementwise_affine: bool = True, norm_type: str = "layer_norm", final_dropout: bool = False, ): super(CausalBasicTransformerBlock, self).__init__(dim, num_attention_heads, attention_head_dim, dropout, cross_attention_dim, activation_fn, num_embeds_ada_norm, attention_bias, only_cross_attention, double_self_attention, upcast_attention, norm_elementwise_affine, norm_type, final_dropout) self.attn1 = CausalAttention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, cross_attention_dim=cross_attention_dim if only_cross_attention else None, upcast_attention=upcast_attention, ) def forward( self, hidden_states: torch.FloatTensor, attention_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, timestep: Optional[torch.LongTensor] = None, cross_attention_kwargs: Dict[str, Any] = None, class_labels: Optional[torch.LongTensor] = None, cache: torch.Tensor = torch.zeros(0, 0, 0, 0), ) -> Tuple[torch.Tensor, torch.Tensor]: # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: norm_hidden_states = self.norm1(hidden_states, timestep) elif self.use_ada_layer_norm_zero: norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype ) else: norm_hidden_states = self.norm1(hidden_states) cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} attn_output, cache = self.attn1( norm_hidden_states, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=encoder_attention_mask if self.only_cross_attention else attention_mask, cache=cache, **cross_attention_kwargs, ) if self.use_ada_layer_norm_zero: attn_output = gate_msa.unsqueeze(1) * attn_output hidden_states = attn_output + hidden_states # 2. Cross-Attention if self.attn2 is not None: norm_hidden_states = ( self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) ) attn_output = self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask, **cross_attention_kwargs, ) hidden_states = attn_output + hidden_states # 3. Feed-forward norm_hidden_states = self.norm3(hidden_states) if self.use_ada_layer_norm_zero: norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError(f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: \ {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.") num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size ff_output = torch.cat( [self.ff(hid_slice) for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)], dim=self._chunk_dim, ) else: ff_output = self.ff(norm_hidden_states) if self.use_ada_layer_norm_zero: ff_output = gate_mlp.unsqueeze(1) * ff_output hidden_states = ff_output + hidden_states return hidden_states, cache class ConditionalDecoder(nn.Module): def __init__( self, in_channels, out_channels, channels=(256, 256), dropout=0.05, attention_head_dim=64, n_blocks=1, num_mid_blocks=2, num_heads=4, act_fn="snake", ): """ This decoder requires an input with the same shape of the target. So, if your text content is shorter or longer than the outputs, please re-sampling it before feeding to the decoder. """ super().__init__() channels = tuple(channels) self.in_channels = in_channels self.out_channels = out_channels self.time_embeddings = SinusoidalPosEmb(in_channels) time_embed_dim = channels[0] * 4 self.time_mlp = TimestepEmbedding( in_channels=in_channels, time_embed_dim=time_embed_dim, act_fn="silu", ) self.down_blocks = nn.ModuleList([]) self.mid_blocks = nn.ModuleList([]) self.up_blocks = nn.ModuleList([]) output_channel = in_channels for i in range(len(channels)): # pylint: disable=consider-using-enumerate input_channel = output_channel output_channel = channels[i] is_last = i == len(channels) - 1 resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( dim=output_channel, num_attention_heads=num_heads, attention_head_dim=attention_head_dim, dropout=dropout, activation_fn=act_fn, ) for _ in range(n_blocks) ] ) downsample = ( Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1) ) self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample])) for _ in range(num_mid_blocks): input_channel = channels[-1] out_channels = channels[-1] resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( dim=output_channel, num_attention_heads=num_heads, attention_head_dim=attention_head_dim, dropout=dropout, activation_fn=act_fn, ) for _ in range(n_blocks) ] ) self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks])) channels = channels[::-1] + (channels[0],) for i in range(len(channels) - 1): input_channel = channels[i] * 2 output_channel = channels[i + 1] is_last = i == len(channels) - 2 resnet = ResnetBlock1D( dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim, ) transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( dim=output_channel, num_attention_heads=num_heads, attention_head_dim=attention_head_dim, dropout=dropout, activation_fn=act_fn, ) for _ in range(n_blocks) ] ) upsample = ( Upsample1D(output_channel, use_conv_transpose=True) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1) ) self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample])) self.final_block = Block1D(channels[-1], channels[-1]) self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1) self.initialize_weights() def initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv1d): nn.init.kaiming_normal_(m.weight, nonlinearity="relu") if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.GroupNorm): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.kaiming_normal_(m.weight, nonlinearity="relu") if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x, mask, mu, t, spks=None, cond=None, streaming=False): """Forward pass of the UNet1DConditional model. Args: x (torch.Tensor): shape (batch_size, in_channels, time) mask (_type_): shape (batch_size, 1, time) t (_type_): shape (batch_size) spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None. cond (_type_, optional): placeholder for future use. Defaults to None. Raises: ValueError: _description_ ValueError: _description_ Returns: _type_: _description_ """ t = self.time_embeddings(t).to(t.dtype) t = self.time_mlp(t) x = pack([x, mu], "b * t")[0] if spks is not None: spks = repeat(spks, "b c -> b c t", t=x.shape[-1]) x = pack([x, spks], "b * t")[0] if cond is not None: x = pack([x, cond], "b * t")[0] hiddens = [] masks = [mask] for resnet, transformer_blocks, downsample in self.down_blocks: mask_down = masks[-1] x = resnet(x, mask_down, t) x = rearrange(x, "b c t -> b t c").contiguous() attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1) attn_mask = mask_to_bias(attn_mask, x.dtype) for transformer_block in transformer_blocks: x = transformer_block( hidden_states=x, attention_mask=attn_mask, timestep=t, ) x = rearrange(x, "b t c -> b c t").contiguous() hiddens.append(x) # Save hidden states for skip connections x = downsample(x * mask_down) masks.append(mask_down[:, :, ::2]) masks = masks[:-1] mask_mid = masks[-1] for resnet, transformer_blocks in self.mid_blocks: x = resnet(x, mask_mid, t) x = rearrange(x, "b c t -> b t c").contiguous() attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1) attn_mask = mask_to_bias(attn_mask, x.dtype) for transformer_block in transformer_blocks: x = transformer_block( hidden_states=x, attention_mask=attn_mask, timestep=t, ) x = rearrange(x, "b t c -> b c t").contiguous() for resnet, transformer_blocks, upsample in self.up_blocks: mask_up = masks.pop() skip = hiddens.pop() x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0] x = resnet(x, mask_up, t) x = rearrange(x, "b c t -> b t c").contiguous() attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1) attn_mask = mask_to_bias(attn_mask, x.dtype) for transformer_block in transformer_blocks: x = transformer_block( hidden_states=x, attention_mask=attn_mask, timestep=t, ) x = rearrange(x, "b t c -> b c t").contiguous() x = upsample(x * mask_up) x = self.final_block(x, mask_up) output = self.final_proj(x * mask_up) return output * mask class CausalConditionalDecoder(ConditionalDecoder): def __init__( self, in_channels, out_channels, channels=(256, 256), dropout=0.05, attention_head_dim=64, n_blocks=1, num_mid_blocks=2, num_heads=4, act_fn="snake", static_chunk_size=50, num_decoding_left_chunks=2, ): """ This decoder requires an input with the same shape of the target. So, if your text content is shorter or longer than the outputs, please re-sampling it before feeding to the decoder. """ torch.nn.Module.__init__(self) channels = tuple(channels) self.in_channels = in_channels self.out_channels = out_channels self.time_embeddings = SinusoidalPosEmb(in_channels) time_embed_dim = channels[0] * 4 self.time_mlp = TimestepEmbedding( in_channels=in_channels, time_embed_dim=time_embed_dim, act_fn="silu", ) self.static_chunk_size = static_chunk_size self.num_decoding_left_chunks = num_decoding_left_chunks self.down_blocks = nn.ModuleList([]) self.mid_blocks = nn.ModuleList([]) self.up_blocks = nn.ModuleList([]) output_channel = in_channels for i in range(len(channels)): # pylint: disable=consider-using-enumerate input_channel = output_channel output_channel = channels[i] is_last = i == len(channels) - 1 resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) transformer_blocks = nn.ModuleList( [ CausalBasicTransformerBlock( dim=output_channel, num_attention_heads=num_heads, attention_head_dim=attention_head_dim, dropout=dropout, activation_fn=act_fn, ) for _ in range(n_blocks) ] ) downsample = ( Downsample1D(output_channel) if not is_last else CausalConv1d(output_channel, output_channel, 3) ) self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample])) for _ in range(num_mid_blocks): input_channel = channels[-1] out_channels = channels[-1] resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) transformer_blocks = nn.ModuleList( [ CausalBasicTransformerBlock( dim=output_channel, num_attention_heads=num_heads, attention_head_dim=attention_head_dim, dropout=dropout, activation_fn=act_fn, ) for _ in range(n_blocks) ] ) self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks])) channels = channels[::-1] + (channels[0],) for i in range(len(channels) - 1): input_channel = channels[i] * 2 output_channel = channels[i + 1] is_last = i == len(channels) - 2 resnet = CausalResnetBlock1D( dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim, ) transformer_blocks = nn.ModuleList( [ CausalBasicTransformerBlock( dim=output_channel, num_attention_heads=num_heads, attention_head_dim=attention_head_dim, dropout=dropout, activation_fn=act_fn, ) for _ in range(n_blocks) ] ) upsample = ( Upsample1D(output_channel, use_conv_transpose=True) if not is_last else CausalConv1d(output_channel, output_channel, 3) ) self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample])) self.final_block = CausalBlock1D(channels[-1], channels[-1]) self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1) self.initialize_weights() def forward(self, x, mask, mu, t, spks=None, cond=None, streaming=False): """Forward pass of the UNet1DConditional model. Args: x (torch.Tensor): shape (batch_size, in_channels, time) mask (_type_): shape (batch_size, 1, time) t (_type_): shape (batch_size) spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None. cond (_type_, optional): placeholder for future use. Defaults to None. Raises: ValueError: _description_ ValueError: _description_ Returns: _type_: _description_ """ t = self.time_embeddings(t).to(t.dtype) t = self.time_mlp(t) x = pack([x, mu], "b * t")[0] if spks is not None: spks = repeat(spks, "b c -> b c t", t=x.shape[-1]) x = pack([x, spks], "b * t")[0] if cond is not None: x = pack([x, cond], "b * t")[0] hiddens = [] masks = [mask] for resnet, transformer_blocks, downsample in self.down_blocks: mask_down = masks[-1] x, _, _ = resnet(x, mask_down, t) x = rearrange(x, "b c t -> b t c").contiguous() if streaming is True: attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, self.static_chunk_size, self.num_decoding_left_chunks) else: attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1) attn_mask = mask_to_bias(attn_mask, x.dtype) for transformer_block in transformer_blocks: x, _ = transformer_block( hidden_states=x, attention_mask=attn_mask, timestep=t, ) x = rearrange(x, "b t c -> b c t").contiguous() hiddens.append(x) # Save hidden states for skip connections x, _ = downsample(x * mask_down) masks.append(mask_down[:, :, ::2]) masks = masks[:-1] mask_mid = masks[-1] for resnet, transformer_blocks in self.mid_blocks: x, _, _ = resnet(x, mask_mid, t) x = rearrange(x, "b c t -> b t c").contiguous() if streaming is True: attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, self.static_chunk_size, self.num_decoding_left_chunks) else: attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1) attn_mask = mask_to_bias(attn_mask, x.dtype) for transformer_block in transformer_blocks: x, _ = transformer_block( hidden_states=x, attention_mask=attn_mask, timestep=t, ) x = rearrange(x, "b t c -> b c t").contiguous() for resnet, transformer_blocks, upsample in self.up_blocks: mask_up = masks.pop() skip = hiddens.pop() x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0] x, _, _ = resnet(x, mask_up, t) x = rearrange(x, "b c t -> b t c").contiguous() if streaming is True: attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, self.static_chunk_size, self.num_decoding_left_chunks) else: attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1) attn_mask = mask_to_bias(attn_mask, x.dtype) for transformer_block in transformer_blocks: x, _ = transformer_block( hidden_states=x, attention_mask=attn_mask, timestep=t, ) x = rearrange(x, "b t c -> b c t").contiguous() x, _ = upsample(x * mask_up) x, _ = self.final_block(x, mask_up) output = self.final_proj(x * mask_up) return output * mask @torch.inference_mode() def forward_chunk(self, x, mask, mu, t, spks=None, cond=None, down_blocks_conv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0), down_blocks_kv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0, 0, 0), mid_blocks_conv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0), mid_blocks_kv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0, 0, 0), up_blocks_conv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0), up_blocks_kv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0, 0, 0), final_blocks_conv_cache: torch.Tensor = torch.zeros(0, 0, 0) ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """Forward pass of the UNet1DConditional model. Args: x (torch.Tensor): shape (batch_size, in_channels, time) mask (_type_): shape (batch_size, 1, time) t (_type_): shape (batch_size) spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None. cond (_type_, optional): placeholder for future use. Defaults to None. Raises: ValueError: _description_ ValueError: _description_ Returns: _type_: _description_ """ t = self.time_embeddings(t).to(t.dtype) t = self.time_mlp(t) x = pack([x, mu], "b * t")[0] if spks is not None: spks = repeat(spks, "b c -> b c t", t=x.shape[-1]) x = pack([x, spks], "b * t")[0] if cond is not None: x = pack([x, cond], "b * t")[0] hiddens = [] masks = [mask] down_blocks_kv_cache_new = torch.zeros(1, 4, 2, x.size(2), 512, 2).to(x.device) mid_blocks_kv_cache_new = torch.zeros(12, 4, 2, x.size(2), 512, 2).to(x.device) up_blocks_kv_cache_new = torch.zeros(1, 4, 2, x.size(2), 512, 2).to(x.device) for index, (resnet, transformer_blocks, downsample) in enumerate(self.down_blocks): mask_down = masks[-1] x, down_blocks_conv_cache[index][:, :320], down_blocks_conv_cache[index][:, 320: 576] = \ resnet(x, mask_down, t, down_blocks_conv_cache[index][:, :320], down_blocks_conv_cache[index][:, 320: 576]) x = rearrange(x, "b c t -> b t c").contiguous() attn_mask = torch.ones(x.size(0), x.size(1), x.size(1) + down_blocks_kv_cache.size(3), device=x.device).bool() attn_mask = mask_to_bias(attn_mask, x.dtype) for i, transformer_block in enumerate(transformer_blocks): x, down_blocks_kv_cache_new[index, i] = transformer_block( hidden_states=x, attention_mask=attn_mask, timestep=t, cache=down_blocks_kv_cache[index, i], ) x = rearrange(x, "b t c -> b c t").contiguous() hiddens.append(x) # Save hidden states for skip connections x, down_blocks_conv_cache[index][:, 576:] = downsample(x * mask_down, down_blocks_conv_cache[index][:, 576:]) masks.append(mask_down[:, :, ::2]) masks = masks[:-1] mask_mid = masks[-1] for index, (resnet, transformer_blocks) in enumerate(self.mid_blocks): x, mid_blocks_conv_cache[index][:, :256], mid_blocks_conv_cache[index][:, 256:] = \ resnet(x, mask_mid, t, mid_blocks_conv_cache[index][:, :256], mid_blocks_conv_cache[index][:, 256:]) x = rearrange(x, "b c t -> b t c").contiguous() attn_mask = torch.ones(x.size(0), x.size(1), x.size(1) + mid_blocks_kv_cache.size(3), device=x.device).bool() attn_mask = mask_to_bias(attn_mask, x.dtype) for i, transformer_block in enumerate(transformer_blocks): x, mid_blocks_kv_cache_new[index, i] = transformer_block( hidden_states=x, attention_mask=attn_mask, timestep=t, cache=mid_blocks_kv_cache[index, i] ) x = rearrange(x, "b t c -> b c t").contiguous() for index, (resnet, transformer_blocks, upsample) in enumerate(self.up_blocks): mask_up = masks.pop() skip = hiddens.pop() x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0] x, up_blocks_conv_cache[index][:, :512], up_blocks_conv_cache[index][:, 512: 768] = \ resnet(x, mask_up, t, up_blocks_conv_cache[index][:, :512], up_blocks_conv_cache[index][:, 512: 768]) x = rearrange(x, "b c t -> b t c").contiguous() attn_mask = torch.ones(x.size(0), x.size(1), x.size(1) + up_blocks_kv_cache.size(3), device=x.device).bool() attn_mask = mask_to_bias(attn_mask, x.dtype) for i, transformer_block in enumerate(transformer_blocks): x, up_blocks_kv_cache_new[index, i] = transformer_block( hidden_states=x, attention_mask=attn_mask, timestep=t, cache=up_blocks_kv_cache[index, i] ) x = rearrange(x, "b t c -> b c t").contiguous() x, up_blocks_conv_cache[index][:, 768:] = upsample(x * mask_up, up_blocks_conv_cache[index][:, 768:]) x, final_blocks_conv_cache = self.final_block(x, mask_up, final_blocks_conv_cache) output = self.final_proj(x * mask_up) return output * mask, down_blocks_conv_cache, down_blocks_kv_cache_new, mid_blocks_conv_cache, mid_blocks_kv_cache_new, \ up_blocks_conv_cache, up_blocks_kv_cache_new, final_blocks_conv_cache