mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-05 09:59:23 +08:00
use thread pool in tools
This commit is contained in:
@@ -13,74 +13,39 @@
|
|||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
import argparse
|
import argparse
|
||||||
import os
|
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||||
from concurrent.futures import ThreadPoolExecutor
|
|
||||||
|
|
||||||
import onnxruntime
|
import onnxruntime
|
||||||
import torch
|
import torch
|
||||||
import torchaudio
|
import torchaudio
|
||||||
import torchaudio.compliance.kaldi as kaldi
|
import torchaudio.compliance.kaldi as kaldi
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
from itertools import repeat
|
|
||||||
|
|
||||||
|
|
||||||
def extract_embedding(utt: str, wav_file: str, ort_session: onnxruntime.InferenceSession):
|
def single_job(utt):
|
||||||
audio, sample_rate = torchaudio.load(wav_file)
|
audio, sample_rate = torchaudio.load(utt2wav[utt])
|
||||||
if sample_rate != 16000:
|
if sample_rate != 16000:
|
||||||
audio = torchaudio.transforms.Resample(
|
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
|
||||||
orig_freq=sample_rate, new_freq=16000
|
feat = kaldi.fbank(audio,
|
||||||
)(audio)
|
num_mel_bins=80,
|
||||||
feat = kaldi.fbank(audio, num_mel_bins=80, dither=0, sample_frequency=16000)
|
dither=0,
|
||||||
|
sample_frequency=16000)
|
||||||
feat = feat - feat.mean(dim=0, keepdim=True)
|
feat = feat - feat.mean(dim=0, keepdim=True)
|
||||||
embedding = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
embedding = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
||||||
return (utt, embedding)
|
return utt, embedding
|
||||||
|
|
||||||
|
|
||||||
def main(args):
|
def main(args):
|
||||||
utt2wav, utt2spk = {}, {}
|
all_task = [executor.submit(single_job, utt) for utt in utt2wav.keys()]
|
||||||
with open("{}/wav.scp".format(args.dir)) as f:
|
|
||||||
for l in f:
|
|
||||||
l = l.replace("\n", "").split()
|
|
||||||
utt2wav[l[0]] = l[1]
|
|
||||||
with open("{}/utt2spk".format(args.dir)) as f:
|
|
||||||
for l in f:
|
|
||||||
l = l.replace("\n", "").split()
|
|
||||||
utt2spk[l[0]] = l[1]
|
|
||||||
|
|
||||||
assert os.path.exists(args.onnx_path), "onnx_path not exists"
|
|
||||||
|
|
||||||
option = onnxruntime.SessionOptions()
|
|
||||||
option.graph_optimization_level = (
|
|
||||||
onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
|
||||||
)
|
|
||||||
option.intra_op_num_threads = 1
|
|
||||||
providers = ["CPUExecutionProvider"]
|
|
||||||
ort_session = onnxruntime.InferenceSession(
|
|
||||||
args.onnx_path, sess_options=option, providers=providers
|
|
||||||
)
|
|
||||||
|
|
||||||
all_utt = utt2wav.keys()
|
|
||||||
|
|
||||||
with ThreadPoolExecutor(max_workers=args.num_thread) as executor:
|
|
||||||
results = list(
|
|
||||||
tqdm(
|
|
||||||
executor.map(extract_embedding, all_utt, [utt2wav[utt] for utt in all_utt], repeat(ort_session)),
|
|
||||||
total=len(utt2wav),
|
|
||||||
desc="Process data: "
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
utt2embedding, spk2embedding = {}, {}
|
utt2embedding, spk2embedding = {}, {}
|
||||||
for utt, embedding in results:
|
for future in tqdm(as_completed(all_task)):
|
||||||
|
utt, embedding = future.result()
|
||||||
utt2embedding[utt] = embedding
|
utt2embedding[utt] = embedding
|
||||||
spk = utt2spk[utt]
|
spk = utt2spk[utt]
|
||||||
if spk not in spk2embedding:
|
if spk not in spk2embedding:
|
||||||
spk2embedding[spk] = []
|
spk2embedding[spk] = []
|
||||||
spk2embedding[spk].append(embedding)
|
spk2embedding[spk].append(embedding)
|
||||||
|
|
||||||
for k, v in spk2embedding.items():
|
for k, v in spk2embedding.items():
|
||||||
spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()
|
spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()
|
||||||
|
|
||||||
torch.save(utt2embedding, "{}/utt2embedding.pt".format(args.dir))
|
torch.save(utt2embedding, "{}/utt2embedding.pt".format(args.dir))
|
||||||
torch.save(spk2embedding, "{}/spk2embedding.pt".format(args.dir))
|
torch.save(spk2embedding, "{}/spk2embedding.pt".format(args.dir))
|
||||||
|
|
||||||
@@ -91,4 +56,22 @@ if __name__ == "__main__":
|
|||||||
parser.add_argument("--onnx_path", type=str)
|
parser.add_argument("--onnx_path", type=str)
|
||||||
parser.add_argument("--num_thread", type=int, default=8)
|
parser.add_argument("--num_thread", type=int, default=8)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
utt2wav, utt2spk = {}, {}
|
||||||
|
with open('{}/wav.scp'.format(args.dir)) as f:
|
||||||
|
for l in f:
|
||||||
|
l = l.replace('\n', '').split()
|
||||||
|
utt2wav[l[0]] = l[1]
|
||||||
|
with open('{}/utt2spk'.format(args.dir)) as f:
|
||||||
|
for l in f:
|
||||||
|
l = l.replace('\n', '').split()
|
||||||
|
utt2spk[l[0]] = l[1]
|
||||||
|
|
||||||
|
option = onnxruntime.SessionOptions()
|
||||||
|
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
||||||
|
option.intra_op_num_threads = 1
|
||||||
|
providers = ["CPUExecutionProvider"]
|
||||||
|
ort_session = onnxruntime.InferenceSession(args.onnx_path, sess_options=option, providers=providers)
|
||||||
|
executor = ThreadPoolExecutor(max_workers=args.num_thread)
|
||||||
|
|
||||||
main(args)
|
main(args)
|
||||||
|
|||||||
@@ -13,6 +13,7 @@
|
|||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
import argparse
|
import argparse
|
||||||
|
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||||
import logging
|
import logging
|
||||||
import torch
|
import torch
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
@@ -22,7 +23,36 @@ import torchaudio
|
|||||||
import whisper
|
import whisper
|
||||||
|
|
||||||
|
|
||||||
|
def single_job(utt):
|
||||||
|
audio, sample_rate = torchaudio.load(utt2wav[utt])
|
||||||
|
if sample_rate != 16000:
|
||||||
|
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
|
||||||
|
if audio.shape[1] / 16000 > 30:
|
||||||
|
logging.warning('do not support extract speech token for audio longer than 30s')
|
||||||
|
speech_token = []
|
||||||
|
else:
|
||||||
|
feat = whisper.log_mel_spectrogram(audio, n_mels=128)
|
||||||
|
speech_token = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.detach().cpu().numpy(),
|
||||||
|
ort_session.get_inputs()[1].name: np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
|
||||||
|
return utt, speech_token
|
||||||
|
|
||||||
|
|
||||||
def main(args):
|
def main(args):
|
||||||
|
all_task = [executor.submit(single_job, utt) for utt in utt2wav.keys()]
|
||||||
|
utt2speech_token = {}
|
||||||
|
for future in tqdm(as_completed(all_task)):
|
||||||
|
utt, speech_token = future.result()
|
||||||
|
utt2speech_token[utt] = speech_token
|
||||||
|
torch.save(utt2speech_token, '{}/utt2speech_token.pt'.format(args.dir))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument("--dir", type=str)
|
||||||
|
parser.add_argument("--onnx_path", type=str)
|
||||||
|
parser.add_argument("--num_thread", type=int, default=8)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
utt2wav = {}
|
utt2wav = {}
|
||||||
with open('{}/wav.scp'.format(args.dir)) as f:
|
with open('{}/wav.scp'.format(args.dir)) as f:
|
||||||
for l in f:
|
for l in f:
|
||||||
@@ -34,28 +64,6 @@ def main(args):
|
|||||||
option.intra_op_num_threads = 1
|
option.intra_op_num_threads = 1
|
||||||
providers = ["CUDAExecutionProvider"]
|
providers = ["CUDAExecutionProvider"]
|
||||||
ort_session = onnxruntime.InferenceSession(args.onnx_path, sess_options=option, providers=providers)
|
ort_session = onnxruntime.InferenceSession(args.onnx_path, sess_options=option, providers=providers)
|
||||||
|
executor = ThreadPoolExecutor(max_workers=args.num_thread)
|
||||||
|
|
||||||
utt2speech_token = {}
|
|
||||||
for utt in tqdm(utt2wav.keys()):
|
|
||||||
audio, sample_rate = torchaudio.load(utt2wav[utt])
|
|
||||||
if sample_rate != 16000:
|
|
||||||
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
|
|
||||||
if audio.shape[1] / 16000 > 30:
|
|
||||||
logging.warning('do not support extract speech token for audio longer than 30s')
|
|
||||||
speech_token = []
|
|
||||||
else:
|
|
||||||
feat = whisper.log_mel_spectrogram(audio, n_mels=128)
|
|
||||||
speech_token = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.detach().cpu().numpy(),
|
|
||||||
ort_session.get_inputs()[1].name: np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
|
|
||||||
utt2speech_token[utt] = speech_token
|
|
||||||
torch.save(utt2speech_token, '{}/utt2speech_token.pt'.format(args.dir))
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument('--dir',
|
|
||||||
type=str)
|
|
||||||
parser.add_argument('--onnx_path',
|
|
||||||
type=str)
|
|
||||||
args = parser.parse_args()
|
|
||||||
main(args)
|
main(args)
|
||||||
|
|||||||
Reference in New Issue
Block a user