mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 17:39:25 +08:00
use thread pool in tools
This commit is contained in:
@@ -13,6 +13,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import argparse
|
||||
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||
import logging
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
@@ -22,7 +23,36 @@ import torchaudio
|
||||
import whisper
|
||||
|
||||
|
||||
def single_job(utt):
|
||||
audio, sample_rate = torchaudio.load(utt2wav[utt])
|
||||
if sample_rate != 16000:
|
||||
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
|
||||
if audio.shape[1] / 16000 > 30:
|
||||
logging.warning('do not support extract speech token for audio longer than 30s')
|
||||
speech_token = []
|
||||
else:
|
||||
feat = whisper.log_mel_spectrogram(audio, n_mels=128)
|
||||
speech_token = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.detach().cpu().numpy(),
|
||||
ort_session.get_inputs()[1].name: np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
|
||||
return utt, speech_token
|
||||
|
||||
|
||||
def main(args):
|
||||
all_task = [executor.submit(single_job, utt) for utt in utt2wav.keys()]
|
||||
utt2speech_token = {}
|
||||
for future in tqdm(as_completed(all_task)):
|
||||
utt, speech_token = future.result()
|
||||
utt2speech_token[utt] = speech_token
|
||||
torch.save(utt2speech_token, '{}/utt2speech_token.pt'.format(args.dir))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--dir", type=str)
|
||||
parser.add_argument("--onnx_path", type=str)
|
||||
parser.add_argument("--num_thread", type=int, default=8)
|
||||
args = parser.parse_args()
|
||||
|
||||
utt2wav = {}
|
||||
with open('{}/wav.scp'.format(args.dir)) as f:
|
||||
for l in f:
|
||||
@@ -34,28 +64,6 @@ def main(args):
|
||||
option.intra_op_num_threads = 1
|
||||
providers = ["CUDAExecutionProvider"]
|
||||
ort_session = onnxruntime.InferenceSession(args.onnx_path, sess_options=option, providers=providers)
|
||||
executor = ThreadPoolExecutor(max_workers=args.num_thread)
|
||||
|
||||
utt2speech_token = {}
|
||||
for utt in tqdm(utt2wav.keys()):
|
||||
audio, sample_rate = torchaudio.load(utt2wav[utt])
|
||||
if sample_rate != 16000:
|
||||
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
|
||||
if audio.shape[1] / 16000 > 30:
|
||||
logging.warning('do not support extract speech token for audio longer than 30s')
|
||||
speech_token = []
|
||||
else:
|
||||
feat = whisper.log_mel_spectrogram(audio, n_mels=128)
|
||||
speech_token = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.detach().cpu().numpy(),
|
||||
ort_session.get_inputs()[1].name: np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
|
||||
utt2speech_token[utt] = speech_token
|
||||
torch.save(utt2speech_token, '{}/utt2speech_token.pt'.format(args.dir))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--dir',
|
||||
type=str)
|
||||
parser.add_argument('--onnx_path',
|
||||
type=str)
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
|
||||
Reference in New Issue
Block a user