diff --git a/cosyvoice/bin/export_onnx.py b/cosyvoice/bin/export_onnx.py new file mode 100644 index 0000000..6ef4ab1 --- /dev/null +++ b/cosyvoice/bin/export_onnx.py @@ -0,0 +1,228 @@ +# Copyright (c) 2024 Antgroup Inc (authors: Zhoubofan, hexisyztem@icloud.com) +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import argparse +import logging +import os +import sys + +logging.getLogger('matplotlib').setLevel(logging.WARNING) +import onnxruntime as ort +import numpy as np + +# try: +# import tensorrt +# import tensorrt as trt +# except ImportError: +# error_msg_zh = [ +# "step.1 下载 tensorrt .tar.gz 压缩包并解压,下载地址: https://developer.nvidia.com/tensorrt/download/10x", +# "step.2 使用 tensorrt whl 包进行安装根据 python 版本对应进行安装,如 pip install ${TensorRT-Path}/python/tensorrt-10.2.0-cp38-none-linux_x86_64.whl", +# "step.3 将 tensorrt 的 lib 路径添加进环境变量中,export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${TensorRT-Path}/lib/" +# ] +# print("\n".join(error_msg_zh)) +# sys.exit(1) + +import torch +from cosyvoice.cli.cosyvoice import CosyVoice + + +def calculate_onnx(onnx_file, x, mask, mu, t, spks, cond): + providers = ['CUDAExecutionProvider'] + sess_options = ort.SessionOptions() + + providers = [ + 'CUDAExecutionProvider' + ] + + # Load the ONNX model + session = ort.InferenceSession(onnx_file, sess_options=sess_options, providers=providers) + + x_np = x.cpu().numpy() + mask_np = mask.cpu().numpy() + mu_np = mu.cpu().numpy() + t_np = np.array(t.cpu()) + spks_np = spks.cpu().numpy() + cond_np = cond.cpu().numpy() + + ort_inputs = { + 'x': x_np, + 'mask': mask_np, + 'mu': mu_np, + 't': t_np, + 'spks': spks_np, + 'cond': cond_np + } + + output = session.run(None, ort_inputs) + + return output[0] + +# def calculate_tensorrt(trt_file, x, mask, mu, t, spks, cond): +# trt.init_libnvinfer_plugins(None, "") +# logger = trt.Logger(trt.Logger.WARNING) +# runtime = trt.Runtime(logger) +# with open(trt_file, 'rb') as f: +# serialized_engine = f.read() +# engine = runtime.deserialize_cuda_engine(serialized_engine) +# context = engine.create_execution_context() + +# bs = x.shape[0] +# hs = x.shape[1] +# seq_len = x.shape[2] + +# ret = torch.zeros_like(x) + +# # Set input shapes for dynamic dimensions +# context.set_input_shape("x", x.shape) +# context.set_input_shape("mask", mask.shape) +# context.set_input_shape("mu", mu.shape) +# context.set_input_shape("t", t.shape) +# context.set_input_shape("spks", spks.shape) +# context.set_input_shape("cond", cond.shape) + +# # bindings = [x.data_ptr(), mask.data_ptr(), mu.data_ptr(), t.data_ptr(), spks.data_ptr(), cond.data_ptr(), ret.data_ptr()] +# # names = ['x', 'mask', 'mu', 't', 'spks', 'cond', 'estimator_out'] +# # +# # for i in range(len(bindings)): +# # context.set_tensor_address(names[i], bindings[i]) +# # +# # handle = torch.cuda.current_stream().cuda_stream +# # context.execute_async_v3(stream_handle=handle) + +# # Create a list of bindings +# bindings = [int(x.data_ptr()), int(mask.data_ptr()), int(mu.data_ptr()), int(t.data_ptr()), int(spks.data_ptr()), int(cond.data_ptr()), int(ret.data_ptr())] + +# # Execute the inference +# context.execute_v2(bindings=bindings) + +# torch.cuda.synchronize() + +# return ret + + +# def test_calculate_value(estimator, onnx_file, trt_file, dummy_input, args): +# torch_output = estimator.forward(**dummy_input).cpu().detach().numpy() +# onnx_output = calculate_onnx(onnx_file, **dummy_input) +# tensorrt_output = calculate_tensorrt(trt_file, **dummy_input).cpu().detach().numpy() +# atol = 2e-3 # Absolute tolerance +# rtol = 1e-4 # Relative tolerance + +# print(f"args.export_half: {args.export_half}, args.model_dir: {args.model_dir}") +# print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$") + +# print("torch_output diff with onnx_output: ", ) +# print(f"compare with atol: {atol}, rtol: {rtol} ", np.allclose(torch_output, onnx_output, atol, rtol)) +# print(f"max diff value: ", np.max(np.fabs(torch_output - onnx_output))) +# print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$") + +# print("torch_output diff with tensorrt_output: ") +# print(f"compare with atol: {atol}, rtol: {rtol} ", np.allclose(torch_output, tensorrt_output, atol, rtol)) +# print(f"max diff value: ", np.max(np.fabs(torch_output - tensorrt_output))) +# print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$") + +# print("onnx_output diff with tensorrt_output: ") +# print(f"compare with atol: {atol}, rtol: {rtol} ", np.allclose(onnx_output, tensorrt_output, atol, rtol)) +# print(f"max diff value: ", np.max(np.fabs(onnx_output - tensorrt_output))) +# print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$") + + +def get_args(): + parser = argparse.ArgumentParser(description='Export your model for deployment') + parser.add_argument('--model_dir', type=str, default='pretrained_models/CosyVoice-300M', help='Local path to the model directory') + parser.add_argument('--export_half', type=str, choices=['True', 'False'], default='False', help='Export with half precision (FP16)') + # parser.add_argument('--trt_max_len', type=int, default=8192, help='Export max len') + parser.add_argument('--exec_export', type=str, choices=['True', 'False'], default='True', help='Exec export') + + args = parser.parse_args() + args.export_half = args.export_half == 'True' + args.exec_export = args.exec_export == 'True' + print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$") + print(args) + return args + +def main(): + args = get_args() + + cosyvoice = CosyVoice(args.model_dir, load_jit=False, load_trt=False) + estimator = cosyvoice.model.flow.decoder.estimator + + dtype = torch.float32 if not args.export_half else torch.float16 + device = torch.device("cuda") + batch_size = 1 + seq_len = 256 + out_channels = cosyvoice.model.flow.decoder.estimator.out_channels + x = torch.rand((batch_size, out_channels, seq_len), dtype=dtype, device=device) + mask = torch.ones((batch_size, 1, seq_len), dtype=dtype, device=device) + mu = torch.rand((batch_size, out_channels, seq_len), dtype=dtype, device=device) + t = torch.rand((batch_size, ), dtype=dtype, device=device) + spks = torch.rand((batch_size, out_channels), dtype=dtype, device=device) + cond = torch.rand((batch_size, out_channels, seq_len), dtype=dtype, device=device) + + onnx_file_name = 'estimator_fp32.onnx' if not args.export_half else 'estimator_fp16.onnx' + onnx_file_path = os.path.join(args.model_dir, onnx_file_name) + dummy_input = (x, mask, mu, t, spks, cond) + + estimator = estimator.to(dtype) + + if args.exec_export: + torch.onnx.export( + estimator, + dummy_input, + onnx_file_path, + export_params=True, + opset_version=18, + do_constant_folding=True, + input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'], + output_names=['estimator_out'], + dynamic_axes={ + 'x': {2: 'seq_len'}, + 'mask': {2: 'seq_len'}, + 'mu': {2: 'seq_len'}, + 'cond': {2: 'seq_len'}, + 'estimator_out': {2: 'seq_len'}, + } + ) + + # tensorrt_path = os.environ.get('tensorrt_root_dir') + # if not tensorrt_path: + # raise EnvironmentError("Please set the 'tensorrt_root_dir' environment variable.") + + # if not os.path.isdir(tensorrt_path): + # raise FileNotFoundError(f"The directory {tensorrt_path} does not exist.") + + # trt_lib_path = os.path.join(tensorrt_path, "lib") + # if trt_lib_path not in os.environ.get('LD_LIBRARY_PATH', ''): + # print(f"Adding TensorRT lib path {trt_lib_path} to LD_LIBRARY_PATH.") + # os.environ['LD_LIBRARY_PATH'] = f"{os.environ.get('LD_LIBRARY_PATH', '')}:{trt_lib_path}" + + # trt_file_name = 'estimator_fp32.plan' if not args.export_half else 'estimator_fp16.plan' + # trt_file_path = os.path.join(args.model_dir, trt_file_name) + + # trtexec_bin = os.path.join(tensorrt_path, 'bin/trtexec') + # trt_max_len = args.trt_max_len + # trtexec_cmd = f"{trtexec_bin} --onnx={onnx_file_path} --saveEngine={trt_file_path} " \ + # f"--minShapes=x:1x{out_channels}x1,mask:1x1x1,mu:1x{out_channels}x1,t:1,spks:1x{out_channels},cond:1x{out_channels}x1 " \ + # f"--maxShapes=x:1x{out_channels}x{trt_max_len},mask:1x1x{trt_max_len},mu:1x{out_channels}x{trt_max_len},t:1,spks:1x{out_channels},cond:1x{out_channels}x{trt_max_len} " + \ + # ("--fp16" if args.export_half else "") + + # print("execute ", trtexec_cmd) + + # if args.exec_export: + # os.system(trtexec_cmd) + + # dummy_input = {'x': x, 'mask': mask, 'mu': mu, 't': t, 'spks': spks, 'cond': cond} + # test_calculate_value(estimator, onnx_file_path, trt_file_path, dummy_input, args) + +if __name__ == "__main__": + main() diff --git a/cosyvoice/bin/export_trt.py b/cosyvoice/bin/export_trt.py deleted file mode 100644 index c737373..0000000 --- a/cosyvoice/bin/export_trt.py +++ /dev/null @@ -1,126 +0,0 @@ -# Copyright (c) 2024 Antgroup Inc (authors: Zhoubofan, hexisyztem@icloud.com) -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import argparse -import logging -import os -import sys - -logging.getLogger('matplotlib').setLevel(logging.WARNING) - -try: - import tensorrt -except ImportError: - error_msg_zh = [ - "step.1 下载 tensorrt .tar.gz 压缩包并解压,下载地址: https://developer.nvidia.com/tensorrt/download/10x", - "step.2 使用 tensorrt whl 包进行安装根据 python 版本对应进行安装,如 pip install ${TensorRT-Path}/python/tensorrt-10.2.0-cp38-none-linux_x86_64.whl", - "step.3 将 tensorrt 的 lib 路径添加进环境变量中,export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${TensorRT-Path}/lib/" - ] - print("\n".join(error_msg_zh)) - sys.exit(1) - -import torch -from cosyvoice.cli.cosyvoice import CosyVoice - -def get_args(): - parser = argparse.ArgumentParser(description='Export your model for deployment') - parser.add_argument('--model_dir', - type=str, - default='pretrained_models/CosyVoice-300M-SFT', - help='Local path to the model directory') - - parser.add_argument('--export_half', - action='store_true', - help='Export with half precision (FP16)') - - args = parser.parse_args() - print(args) - return args - -def main(): - args = get_args() - - cosyvoice = CosyVoice(args.model_dir, load_jit=False, load_trt=False) - estimator = cosyvoice.model.flow.decoder.estimator - - dtype = torch.float32 if not args.export_half else torch.float16 - device = torch.device("cuda") - batch_size = 1 - seq_len = 256 - hidden_size = cosyvoice.model.flow.output_size - x = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device) - mask = torch.ones((batch_size, 1, seq_len), dtype=dtype, device=device) - mu = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device) - t = torch.rand((batch_size, ), dtype=dtype, device=device) - spks = torch.rand((batch_size, hidden_size), dtype=dtype, device=device) - cond = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device) - - onnx_file_name = 'estimator_fp32.onnx' if not args.export_half else 'estimator_fp16.onnx' - onnx_file_path = os.path.join(args.model_dir, onnx_file_name) - dummy_input = (x, mask, mu, t, spks, cond) - - estimator = estimator.to(dtype) - - torch.onnx.export( - estimator, - dummy_input, - onnx_file_path, - export_params=True, - opset_version=18, - do_constant_folding=True, - input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'], - output_names=['estimator_out'], - dynamic_axes={ - 'x': {2: 'seq_len'}, - 'mask': {2: 'seq_len'}, - 'mu': {2: 'seq_len'}, - 'cond': {2: 'seq_len'}, - 'estimator_out': {2: 'seq_len'}, - } - ) - - tensorrt_path = os.environ.get('tensorrt_root_dir') - if not tensorrt_path: - raise EnvironmentError("Please set the 'tensorrt_root_dir' environment variable.") - - if not os.path.isdir(tensorrt_path): - raise FileNotFoundError(f"The directory {tensorrt_path} does not exist.") - - trt_lib_path = os.path.join(tensorrt_path, "lib") - if trt_lib_path not in os.environ.get('LD_LIBRARY_PATH', ''): - print(f"Adding TensorRT lib path {trt_lib_path} to LD_LIBRARY_PATH.") - os.environ['LD_LIBRARY_PATH'] = f"{os.environ.get('LD_LIBRARY_PATH', '')}:{trt_lib_path}" - - trt_file_name = 'estimator_fp32.plan' if not args.export_half else 'estimator_fp16.plan' - trt_file_path = os.path.join(args.model_dir, trt_file_name) - - trtexec_bin = os.path.join(tensorrt_path, 'bin/trtexec') - trtexec_cmd = f"{trtexec_bin} --onnx={onnx_file_path} --saveEngine={trt_file_path} " \ - "--minShapes=x:1x80x1,mask:1x1x1,mu:1x80x1,t:1,spks:1x80,cond:1x80x1 " \ - "--maxShapes=x:1x80x4096,mask:1x1x4096,mu:1x80x4096,t:1,spks:1x80,cond:1x80x4096 --verbose " + \ - ("--fp16" if args.export_half else "") - - print("execute ", trtexec_cmd) - - os.system(trtexec_cmd) - - # print("x.shape", x.shape) - # print("mask.shape", mask.shape) - # print("mu.shape", mu.shape) - # print("t.shape", t.shape) - # print("spks.shape", spks.shape) - # print("cond.shape", cond.shape) - -if __name__ == "__main__": - main() diff --git a/cosyvoice/cli/cosyvoice.py b/cosyvoice/cli/cosyvoice.py index 5028ad1..cf5e4e5 100644 --- a/cosyvoice/cli/cosyvoice.py +++ b/cosyvoice/cli/cosyvoice.py @@ -21,7 +21,7 @@ from cosyvoice.utils.file_utils import logging class CosyVoice: - def __init__(self, model_dir, load_jit=True, load_trt=True, use_fp16=False): + def __init__(self, model_dir, load_jit=True, load_trt=False, load_onnx=True, use_fp16=False): instruct = True if '-Instruct' in model_dir else False self.model_dir = model_dir if not os.path.exists(model_dir): @@ -39,13 +39,16 @@ class CosyVoice: self.model.load('{}/llm.pt'.format(model_dir), '{}/flow.pt'.format(model_dir), '{}/hift.pt'.format(model_dir)) - + if load_jit: self.model.load_jit('{}/llm.text_encoder.fp16.zip'.format(model_dir), '{}/llm.llm.fp16.zip'.format(model_dir)) - if load_trt: - self.model.load_trt(model_dir, use_fp16) + # if load_trt: + # self.model.load_trt(model_dir, use_fp16) + + if load_onnx: + self.model.load_onnx(model_dir, use_fp16) del configs diff --git a/cosyvoice/cli/model.py b/cosyvoice/cli/model.py index 50ae0b1..8401d42 100644 --- a/cosyvoice/cli/model.py +++ b/cosyvoice/cli/model.py @@ -19,6 +19,13 @@ import time from contextlib import nullcontext import uuid from cosyvoice.utils.common import fade_in_out +import numpy as np +import onnxruntime as ort + +# try: +# import tensorrt as trt +# except ImportError: +# ... class CosyVoiceModel: @@ -66,21 +73,40 @@ class CosyVoiceModel: llm_llm = torch.jit.load(llm_llm_model) self.llm.llm = llm_llm - def load_trt(self, model_dir, use_fp16): - import tensorrt as trt - trt_file_name = 'estimator_fp16.plan' if use_fp16 else 'estimator_fp32.plan' - trt_file_path = os.path.join(model_dir, trt_file_name) - if not os.path.isfile(trt_file_path): - raise f"{trt_file_path} does not exist. Please use bin/export_trt.py to generate .plan file" + # def load_trt(self, model_dir, use_fp16): + # trt_file_name = 'estimator_fp16.plan' if use_fp16 else 'estimator_fp32.plan' + # trt_file_path = os.path.join(model_dir, trt_file_name) + # if not os.path.isfile(trt_file_path): + # raise f"{trt_file_path} does not exist. Please use bin/export_trt.py to generate .plan file" - trt.init_libnvinfer_plugins(None, "") - logger = trt.Logger(trt.Logger.WARNING) - runtime = trt.Runtime(logger) - with open(trt_file_path, 'rb') as f: - serialized_engine = f.read() - engine = runtime.deserialize_cuda_engine(serialized_engine) - self.flow.decoder.estimator_context = engine.create_execution_context() + # trt.init_libnvinfer_plugins(None, "") + # logger = trt.Logger(trt.Logger.WARNING) + # runtime = trt.Runtime(logger) + # with open(trt_file_path, 'rb') as f: + # serialized_engine = f.read() + # engine = runtime.deserialize_cuda_engine(serialized_engine) + # self.flow.decoder.estimator_context = engine.create_execution_context() + # self.flow.decoder.estimator = None + + def load_onnx(self, model_dir, use_fp16): + onnx_file_name = 'estimator_fp16.onnx' if use_fp16 else 'estimator_fp32.onnx' + onnx_file_path = os.path.join(model_dir, onnx_file_name) + if not os.path.isfile(onnx_file_path): + raise f"{onnx_file_path} does not exist. Please use bin/export_trt.py to generate .onnx file" + + providers = ['CUDAExecutionProvider'] + sess_options = ort.SessionOptions() + + # Add TensorRT Execution Provider + providers = [ + 'CUDAExecutionProvider' + ] + + # Load the ONNX model + self.flow.decoder.session = ort.InferenceSession(onnx_file_path, sess_options=sess_options, providers=providers) + # self.flow.decoder.estimator_context = None self.flow.decoder.estimator = None + def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid): with self.llm_context: diff --git a/cosyvoice/flow/flow_matching.py b/cosyvoice/flow/flow_matching.py index a31506a..27e2276 100755 --- a/cosyvoice/flow/flow_matching.py +++ b/cosyvoice/flow/flow_matching.py @@ -14,6 +14,8 @@ import torch import torch.nn.functional as F from matcha.models.components.flow_matching import BASECFM +import onnxruntime as ort +import numpy as np class ConditionalCFM(BASECFM): def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None): @@ -29,6 +31,8 @@ class ConditionalCFM(BASECFM): in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0) # Just change the architecture of the estimator here self.estimator = estimator + self.estimator_context = None # for tensorrt + self.session = None # for onnx @torch.inference_mode() def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None): @@ -101,28 +105,47 @@ class ConditionalCFM(BASECFM): if self.estimator is not None: return self.estimator.forward(x, mask, mu, t, spks, cond) - else: - assert self.training is False, 'tensorrt cannot be used in training' - bs = x.shape[0] - hs = x.shape[1] - seq_len = x.shape[2] - # assert bs == 1 and hs == 80 - ret = torch.empty_like(x) - self.estimator_context.set_input_shape("x", x.shape) - self.estimator_context.set_input_shape("mask", mask.shape) - self.estimator_context.set_input_shape("mu", mu.shape) - self.estimator_context.set_input_shape("t", t.shape) - self.estimator_context.set_input_shape("spks", spks.shape) - self.estimator_context.set_input_shape("cond", cond.shape) - bindings = [x.data_ptr(), mask.data_ptr(), mu.data_ptr(), t.data_ptr(), spks.data_ptr(), cond.data_ptr(), ret.data_ptr()] - names = ['x', 'mask', 'mu', 't', 'spks', 'cond', 'estimator_out'] - - for i in range(len(bindings)): - self.estimator_context.set_tensor_address(names[i], bindings[i]) + # elif self.estimator_context is not None: + # assert self.training is False, 'tensorrt cannot be used in training' + # bs = x.shape[0] + # hs = x.shape[1] + # seq_len = x.shape[2] + # # assert bs == 1 and hs == 80 + # ret = torch.empty_like(x) + # self.estimator_context.set_input_shape("x", x.shape) + # self.estimator_context.set_input_shape("mask", mask.shape) + # self.estimator_context.set_input_shape("mu", mu.shape) + # self.estimator_context.set_input_shape("t", t.shape) + # self.estimator_context.set_input_shape("spks", spks.shape) + # self.estimator_context.set_input_shape("cond", cond.shape) + + # # Create a list of bindings + # bindings = [int(x.data_ptr()), int(mask.data_ptr()), int(mu.data_ptr()), int(t.data_ptr()), int(spks.data_ptr()), int(cond.data_ptr()), int(ret.data_ptr())] + + # # Execute the inference + # self.estimator_context.execute_v2(bindings=bindings) + # return ret + else: + x_np = x.cpu().numpy() + mask_np = mask.cpu().numpy() + mu_np = mu.cpu().numpy() + t_np = t.cpu().numpy() + spks_np = spks.cpu().numpy() + cond_np = cond.cpu().numpy() + + ort_inputs = { + 'x': x_np, + 'mask': mask_np, + 'mu': mu_np, + 't': t_np, + 'spks': spks_np, + 'cond': cond_np + } + + output = self.session.run(None, ort_inputs)[0] + + return torch.tensor(output, dtype=x.dtype, device=x.device) - handle = torch.cuda.current_stream().cuda_stream - self.estimator_context.execute_async_v3(stream_handle=handle) - return ret def compute_loss(self, x1, mask, mu, spks=None, cond=None): """Computes diffusion loss