mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-05 18:09:24 +08:00
Merge branch 'main' into main
This commit is contained in:
2
.github/workflows/lint.yml
vendored
2
.github/workflows/lint.yml
vendored
@@ -52,5 +52,5 @@ jobs:
|
|||||||
set -eux
|
set -eux
|
||||||
pip install flake8==3.8.2 flake8-bugbear flake8-comprehensions flake8-executable flake8-pyi==20.5.0 mccabe pycodestyle==2.6.0 pyflakes==2.2.0
|
pip install flake8==3.8.2 flake8-bugbear flake8-comprehensions flake8-executable flake8-pyi==20.5.0 mccabe pycodestyle==2.6.0 pyflakes==2.2.0
|
||||||
flake8 --version
|
flake8 --version
|
||||||
flake8 --max-line-length 180 --ignore B006,B008,B905,C408,E402,E731,E741,W503,W504,F401,F403,F405,F841 --exclude ./third_party/,./runtime/python/grpc/cosyvoice_pb2*py
|
flake8 --max-line-length 180 --ignore B006,B008,B905,C408,E402,E731,E741,W503,W504,F401,F403,F405,F722,F841 --exclude ./third_party/,./runtime/python/grpc/cosyvoice_pb2*py
|
||||||
if [ $? != 0 ]; then exit 1; fi
|
if [ $? != 0 ]; then exit 1; fi
|
||||||
173
README.md
173
README.md
@@ -1,54 +1,52 @@
|
|||||||
[](https://github.com/Akshay090/svg-banners)
|

|
||||||
|
|
||||||
## 👉🏻 CosyVoice 👈🏻
|
## 👉🏻 CosyVoice 👈🏻
|
||||||
|
|
||||||
**CosyVoice 3.0**: [Demos](https://funaudiollm.github.io/cosyvoice3/); [Paper](https://arxiv.org/abs/2505.17589); [CV3-Eval](https://github.com/FunAudioLLM/CV3-Eval)
|
**Fun-CosyVoice 3.0**: [Demos](https://funaudiollm.github.io/cosyvoice3/); [Paper](https://arxiv.org/pdf/2505.17589); [Modelscope](https://www.modelscope.cn/models/FunAudioLLM/Fun-CosyVoice3-0.5B-2512); [Huggingface](https://huggingface.co/FunAudioLLM/Fun-CosyVoice3-0.5B-2512); [CV3-Eval](https://github.com/FunAudioLLM/CV3-Eval)
|
||||||
|
|
||||||
**CosyVoice 2.0**: [Demos](https://funaudiollm.github.io/cosyvoice2/); [Paper](https://arxiv.org/abs/2412.10117); [Modelscope](https://www.modelscope.cn/studios/iic/CosyVoice2-0.5B); [HuggingFace](https://huggingface.co/spaces/FunAudioLLM/CosyVoice2-0.5B)
|
**CosyVoice 2.0**: [Demos](https://funaudiollm.github.io/cosyvoice2/); [Paper](https://arxiv.org/pdf/2412.10117); [Modelscope](https://www.modelscope.cn/models/iic/CosyVoice2-0.5B); [HuggingFace](https://huggingface.co/FunAudioLLM/CosyVoice2-0.5B)
|
||||||
|
|
||||||
**CosyVoice 1.0**: [Demos](https://fun-audio-llm.github.io); [Paper](https://funaudiollm.github.io/pdf/CosyVoice_v1.pdf); [Modelscope](https://www.modelscope.cn/studios/iic/CosyVoice-300M)
|
**CosyVoice 1.0**: [Demos](https://fun-audio-llm.github.io); [Paper](https://funaudiollm.github.io/pdf/CosyVoice_v1.pdf); [Modelscope](https://www.modelscope.cn/models/iic/CosyVoice-300M); [HuggingFace](https://huggingface.co/FunAudioLLM/CosyVoice-300M)
|
||||||
|
|
||||||
## Highlight🔥
|
## Highlight🔥
|
||||||
|
|
||||||
**CosyVoice 2.0** has been released! Compared to version 1.0, the new version offers more accurate, more stable, faster, and better speech generation capabilities.
|
**Fun-CosyVoice 3.0** is an advanced text-to-speech (TTS) system based on large language models (LLM), surpassing its predecessor (CosyVoice 2.0) in content consistency, speaker similarity, and prosody naturalness. It is designed for zero-shot multilingual speech synthesis in the wild.
|
||||||
### Multilingual
|
### Key Features
|
||||||
- **Supported Language**: Chinese, English, Japanese, Korean, Chinese dialects (Cantonese, Sichuanese, Shanghainese, Tianjinese, Wuhanese, etc.)
|
- **Language Coverage**: Covers 9 common languages (Chinese, English, Japanese, Korean, German, Spanish, French, Italian, Russian), 18+ Chinese dialects/accents (Guangdong, Minnan, Sichuan, Dongbei, Shan3xi, Shan1xi, Shanghai, Tianjin, Shandong, Ningxia, Gansu, etc.) and meanwhile supports both multi-lingual/cross-lingual zero-shot voice cloning.
|
||||||
- **Crosslingual & Mixlingual**:Support zero-shot voice cloning for cross-lingual and code-switching scenarios.
|
- **Content Consistency & Naturalness**: Achieves state-of-the-art performance in content consistency, speaker similarity, and prosody naturalness.
|
||||||
### Ultra-Low Latency
|
- **Pronunciation Inpainting**: Supports pronunciation inpainting of Chinese Pinyin and English CMU phonemes, providing more controllability and thus suitable for production use.
|
||||||
- **Bidirectional Streaming Support**: CosyVoice 2.0 integrates offline and streaming modeling technologies.
|
- **Text Normalization**: Supports reading of numbers, special symbols and various text formats without a traditional frontend module.
|
||||||
- **Rapid First Packet Synthesis**: Achieves latency as low as 150ms while maintaining high-quality audio output.
|
- **Bi-Streaming**: Support both text-in streaming and audio-out streaming, and achieves latency as low as 150ms while maintaining high-quality audio output.
|
||||||
### High Accuracy
|
- **Instruct Support**: Supports various instructions such as languages, dialects, emotions, speed, volume, etc.
|
||||||
- **Improved Pronunciation**: Reduces pronunciation errors by 30% to 50% compared to CosyVoice 1.0.
|
|
||||||
- **Benchmark Achievements**: Attains the lowest character error rate on the hard test set of the Seed-TTS evaluation set.
|
|
||||||
### Strong Stability
|
|
||||||
- **Consistency in Timbre**: Ensures reliable voice consistency for zero-shot and cross-language speech synthesis.
|
|
||||||
- **Cross-language Synthesis**: Marked improvements compared to version 1.0.
|
|
||||||
### Natural Experience
|
|
||||||
- **Enhanced Prosody and Sound Quality**: Improved alignment of synthesized audio, raising MOS evaluation scores from 5.4 to 5.53.
|
|
||||||
- **Emotional and Dialectal Flexibility**: Now supports more granular emotional controls and accent adjustments.
|
|
||||||
|
|
||||||
## Roadmap
|
## Roadmap
|
||||||
|
|
||||||
|
- [x] 2025/12
|
||||||
|
|
||||||
|
- [x] release Fun-CosyVoice3-0.5B-2512 base model, rl model and its training/inference script
|
||||||
|
- [x] release Fun-CosyVoice3-0.5B modelscope gradio space
|
||||||
|
|
||||||
- [x] 2025/08
|
- [x] 2025/08
|
||||||
|
|
||||||
- [x] Thanks to the contribution from NVIDIA Yuekai Zhang, add triton trtllm runtime support and cosyvoice2 grpo training support
|
- [x] Thanks to the contribution from NVIDIA Yuekai Zhang, add triton trtllm runtime support and cosyvoice2 grpo training support
|
||||||
|
|
||||||
- [x] 2025/07
|
- [x] 2025/07
|
||||||
|
|
||||||
- [x] release cosyvoice 3.0 eval set
|
- [x] release Fun-CosyVoice 3.0 eval set
|
||||||
|
|
||||||
- [x] 2025/05
|
- [x] 2025/05
|
||||||
|
|
||||||
- [x] add cosyvoice 2.0 vllm support
|
- [x] add CosyVoice2-0.5B vllm support
|
||||||
|
|
||||||
- [x] 2024/12
|
- [x] 2024/12
|
||||||
|
|
||||||
- [x] 25hz cosyvoice 2.0 released
|
- [x] 25hz CosyVoice2-0.5B released
|
||||||
|
|
||||||
- [x] 2024/09
|
- [x] 2024/09
|
||||||
|
|
||||||
- [x] 25hz cosyvoice base model
|
- [x] 25hz CosyVoice-300M base model
|
||||||
- [x] 25hz cosyvoice voice conversion model
|
- [x] 25hz CosyVoice-300M voice conversion function
|
||||||
|
|
||||||
- [x] 2024/08
|
- [x] 2024/08
|
||||||
|
|
||||||
@@ -61,6 +59,27 @@
|
|||||||
- [x] WeTextProcessing support when ttsfrd is not available
|
- [x] WeTextProcessing support when ttsfrd is not available
|
||||||
- [x] Fastapi server and client
|
- [x] Fastapi server and client
|
||||||
|
|
||||||
|
## Evaluation
|
||||||
|
|
||||||
|
| Model | Open-Source | Model Size | test-zh<br>CER (%) ↓ | test-zh<br>Speaker Similarity (%) ↑ | test-en<br>WER (%) ↓ | test-en<br>Speaker Similarity (%) ↑ | test-hard<br>CER (%) ↓ | test-hard<br>Speaker Similarity (%) ↑ |
|
||||||
|
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|
||||||
|
| Human | - | - | 1.26 | 75.5 | 2.14 | 73.4 | - | - |
|
||||||
|
| Seed-TTS | ❌ | - | 1.12 | 79.6 | 2.25 | 76.2 | 7.59 | 77.6 |
|
||||||
|
| MiniMax-Speech | ❌ | - | 0.83 | 78.3 | 1.65 | 69.2 | - | - |
|
||||||
|
| F5-TTS | ✅ | 0.3B | 1.52 | 74.1 | 2.00 | 64.7 | 8.67 | 71.3 |
|
||||||
|
| Spark TTS | ✅ | 0.5B | 1.2 | 66.0 | 1.98 | 57.3 | - | - |
|
||||||
|
| CosyVoice2 | ✅ | 0.5B | 1.45 | 75.7 | 2.57 | 65.9 | 6.83 | 72.4 |
|
||||||
|
| FireRedTTS2 | ✅ | 1.5B | 1.14 | 73.2 | 1.95 | 66.5 | - | - |
|
||||||
|
| Index-TTS2 | ✅ | 1.5B | 1.03 | 76.5 | 2.23 | 70.6 | 7.12 | 75.5 |
|
||||||
|
| VibeVoice-1.5B | ✅ | 1.5B | 1.16 | 74.4 | 3.04 | 68.9 | - | - |
|
||||||
|
| VibeVoice-Realtime | ✅ | 0.5B | - | - | 2.05 | 63.3 | - | - |
|
||||||
|
| HiggsAudio-v2 | ✅ | 3B | 1.50 | 74.0 | 2.44 | 67.7 | - | - |
|
||||||
|
| VoxCPM | ✅ | 0.5B | 0.93 | 77.2 | 1.85 | 72.9 | 8.87 | 73.0 |
|
||||||
|
| GLM-TTS | ✅ | 1.5B | 1.03 | 76.1 | - | - | - | - |
|
||||||
|
| GLM-TTS RL | ✅ | 1.5B | 0.89 | 76.4 | - | - | - | - |
|
||||||
|
| Fun-CosyVoice3-0.5B-2512 | ✅ | 0.5B | 1.21 | 78.0 | 2.24 | 71.8 | 6.71 | 75.8 |
|
||||||
|
| Fun-CosyVoice3-0.5B-2512_RL | ✅ | 0.5B | 0.81 | 77.4 | 1.68 | 69.5 | 5.44 | 75.0 |
|
||||||
|
|
||||||
|
|
||||||
## Install
|
## Install
|
||||||
|
|
||||||
@@ -91,26 +110,26 @@
|
|||||||
|
|
||||||
### Model download
|
### Model download
|
||||||
|
|
||||||
We strongly recommend that you download our pretrained `CosyVoice2-0.5B` `CosyVoice-300M` `CosyVoice-300M-SFT` `CosyVoice-300M-Instruct` model and `CosyVoice-ttsfrd` resource.
|
We strongly recommend that you download our pretrained `Fun-CosyVoice3-0.5B` `CosyVoice2-0.5B` `CosyVoice-300M` `CosyVoice-300M-SFT` `CosyVoice-300M-Instruct` model and `CosyVoice-ttsfrd` resource.
|
||||||
|
|
||||||
``` python
|
``` python
|
||||||
# SDK模型下载
|
# modelscope SDK model download
|
||||||
from modelscope import snapshot_download
|
from modelscope import snapshot_download
|
||||||
|
snapshot_download('FunAudioLLM/Fun-CosyVoice3-0.5B-2512', local_dir='pretrained_models/Fun-CosyVoice3-0.5B')
|
||||||
snapshot_download('iic/CosyVoice2-0.5B', local_dir='pretrained_models/CosyVoice2-0.5B')
|
snapshot_download('iic/CosyVoice2-0.5B', local_dir='pretrained_models/CosyVoice2-0.5B')
|
||||||
snapshot_download('iic/CosyVoice-300M', local_dir='pretrained_models/CosyVoice-300M')
|
snapshot_download('iic/CosyVoice-300M', local_dir='pretrained_models/CosyVoice-300M')
|
||||||
snapshot_download('iic/CosyVoice-300M-SFT', local_dir='pretrained_models/CosyVoice-300M-SFT')
|
snapshot_download('iic/CosyVoice-300M-SFT', local_dir='pretrained_models/CosyVoice-300M-SFT')
|
||||||
snapshot_download('iic/CosyVoice-300M-Instruct', local_dir='pretrained_models/CosyVoice-300M-Instruct')
|
snapshot_download('iic/CosyVoice-300M-Instruct', local_dir='pretrained_models/CosyVoice-300M-Instruct')
|
||||||
snapshot_download('iic/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice-ttsfrd')
|
snapshot_download('iic/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice-ttsfrd')
|
||||||
```
|
|
||||||
|
|
||||||
``` sh
|
# for oversea users, huggingface SDK model download
|
||||||
# git模型下载,请确保已安装git lfs
|
from huggingface_hub import snapshot_download
|
||||||
mkdir -p pretrained_models
|
snapshot_download('FunAudioLLM/Fun-CosyVoice3-0.5B-2512', local_dir='pretrained_models/Fun-CosyVoice3-0.5B')
|
||||||
git clone https://www.modelscope.cn/iic/CosyVoice2-0.5B.git pretrained_models/CosyVoice2-0.5B
|
snapshot_download('FunAudioLLM/CosyVoice2-0.5B', local_dir='pretrained_models/CosyVoice2-0.5B')
|
||||||
git clone https://www.modelscope.cn/iic/CosyVoice-300M.git pretrained_models/CosyVoice-300M
|
snapshot_download('FunAudioLLM/CosyVoice-300M', local_dir='pretrained_models/CosyVoice-300M')
|
||||||
git clone https://www.modelscope.cn/iic/CosyVoice-300M-SFT.git pretrained_models/CosyVoice-300M-SFT
|
snapshot_download('FunAudioLLM/CosyVoice-300M-SFT', local_dir='pretrained_models/CosyVoice-300M-SFT')
|
||||||
git clone https://www.modelscope.cn/iic/CosyVoice-300M-Instruct.git pretrained_models/CosyVoice-300M-Instruct
|
snapshot_download('FunAudioLLM/CosyVoice-300M-Instruct', local_dir='pretrained_models/CosyVoice-300M-Instruct')
|
||||||
git clone https://www.modelscope.cn/iic/CosyVoice-ttsfrd.git pretrained_models/CosyVoice-ttsfrd
|
snapshot_download('FunAudioLLM/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice-ttsfrd')
|
||||||
```
|
```
|
||||||
|
|
||||||
Optionally, you can unzip `ttsfrd` resource and install `ttsfrd` package for better text normalization performance.
|
Optionally, you can unzip `ttsfrd` resource and install `ttsfrd` package for better text normalization performance.
|
||||||
@@ -126,50 +145,10 @@ pip install ttsfrd-0.4.2-cp310-cp310-linux_x86_64.whl
|
|||||||
|
|
||||||
### Basic Usage
|
### Basic Usage
|
||||||
|
|
||||||
We strongly recommend using `CosyVoice2-0.5B` for better performance.
|
We strongly recommend using `Fun-CosyVoice3-0.5B` for better performance.
|
||||||
Follow the code below for detailed usage of each model.
|
Follow the code in `example.py` for detailed usage of each model.
|
||||||
|
```sh
|
||||||
``` python
|
python example.py
|
||||||
import sys
|
|
||||||
sys.path.append('third_party/Matcha-TTS')
|
|
||||||
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
|
||||||
from cosyvoice.utils.file_utils import load_wav
|
|
||||||
import torchaudio
|
|
||||||
```
|
|
||||||
|
|
||||||
#### CosyVoice2 Usage
|
|
||||||
```python
|
|
||||||
cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=False, load_trt=False, load_vllm=False, fp16=False)
|
|
||||||
|
|
||||||
# NOTE if you want to reproduce the results on https://funaudiollm.github.io/cosyvoice2, please add text_frontend=False during inference
|
|
||||||
# zero_shot usage
|
|
||||||
prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)
|
|
||||||
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
|
|
||||||
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
|
||||||
|
|
||||||
# save zero_shot spk for future usage
|
|
||||||
assert cosyvoice.add_zero_shot_spk('希望你以后能够做的比我还好呦。', prompt_speech_16k, 'my_zero_shot_spk') is True
|
|
||||||
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '', '', zero_shot_spk_id='my_zero_shot_spk', stream=False)):
|
|
||||||
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
|
||||||
cosyvoice.save_spkinfo()
|
|
||||||
|
|
||||||
# fine grained control, for supported control, check cosyvoice/tokenizer/tokenizer.py#L248
|
|
||||||
for i, j in enumerate(cosyvoice.inference_cross_lingual('在他讲述那个荒诞故事的过程中,他突然[laughter]停下来,因为他自己也被逗笑了[laughter]。', prompt_speech_16k, stream=False)):
|
|
||||||
torchaudio.save('fine_grained_control_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
|
||||||
|
|
||||||
# instruct usage
|
|
||||||
for i, j in enumerate(cosyvoice.inference_instruct2('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '用四川话说这句话', prompt_speech_16k, stream=False)):
|
|
||||||
torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
|
||||||
|
|
||||||
# bistream usage, you can use generator as input, this is useful when using text llm model as input
|
|
||||||
# NOTE you should still have some basic sentence split logic because llm can not handle arbitrary sentence length
|
|
||||||
def text_generator():
|
|
||||||
yield '收到好友从远方寄来的生日礼物,'
|
|
||||||
yield '那份意外的惊喜与深深的祝福'
|
|
||||||
yield '让我心中充满了甜蜜的快乐,'
|
|
||||||
yield '笑容如花儿般绽放。'
|
|
||||||
for i, j in enumerate(cosyvoice.inference_zero_shot(text_generator(), '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
|
|
||||||
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
|
||||||
```
|
```
|
||||||
|
|
||||||
#### CosyVoice2 vllm Usage
|
#### CosyVoice2 vllm Usage
|
||||||
@@ -182,42 +161,12 @@ Notice that `vllm==v0.9.0` has a lot of specific requirements, for example `torc
|
|||||||
conda create -n cosyvoice_vllm --clone cosyvoice
|
conda create -n cosyvoice_vllm --clone cosyvoice
|
||||||
conda activate cosyvoice_vllm
|
conda activate cosyvoice_vllm
|
||||||
# for vllm==0.9.0
|
# for vllm==0.9.0
|
||||||
pip install vllm==v0.9.0 transformers==4.51.3 -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
|
pip install vllm==v0.9.0 transformers==4.51.3 numpy==1.26.4 -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
|
||||||
# for vllm>=0.11.0
|
# for vllm>=0.11.0
|
||||||
pip install vllm==v0.11.0 transformers==4.57.1 -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
|
pip install vllm==v0.11.0 transformers==4.57.1 numpy==1.26.4 -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
|
||||||
python vllm_example.py
|
python vllm_example.py
|
||||||
```
|
```
|
||||||
|
|
||||||
#### CosyVoice Usage
|
|
||||||
```python
|
|
||||||
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-SFT', load_jit=False, load_trt=False, fp16=False)
|
|
||||||
# sft usage
|
|
||||||
print(cosyvoice.list_available_spks())
|
|
||||||
# change stream=True for chunk stream inference
|
|
||||||
for i, j in enumerate(cosyvoice.inference_sft('你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?', '中文女', stream=False)):
|
|
||||||
torchaudio.save('sft_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
|
||||||
|
|
||||||
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M')
|
|
||||||
# zero_shot usage, <|zh|><|en|><|jp|><|yue|><|ko|> for Chinese/English/Japanese/Cantonese/Korean
|
|
||||||
prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)
|
|
||||||
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
|
|
||||||
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
|
||||||
# cross_lingual usage
|
|
||||||
prompt_speech_16k = load_wav('./asset/cross_lingual_prompt.wav', 16000)
|
|
||||||
for i, j in enumerate(cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that\'s coming into the family is a reason why sometimes we don\'t buy the whole thing.', prompt_speech_16k, stream=False)):
|
|
||||||
torchaudio.save('cross_lingual_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
|
||||||
# vc usage
|
|
||||||
prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)
|
|
||||||
source_speech_16k = load_wav('./asset/cross_lingual_prompt.wav', 16000)
|
|
||||||
for i, j in enumerate(cosyvoice.inference_vc(source_speech_16k, prompt_speech_16k, stream=False)):
|
|
||||||
torchaudio.save('vc_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
|
||||||
|
|
||||||
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-Instruct')
|
|
||||||
# instruct usage, support <laughter></laughter><strong></strong>[laughter][breath]
|
|
||||||
for i, j in enumerate(cosyvoice.inference_instruct('在面对挑战时,他展现了非凡的<strong>勇气</strong>与<strong>智慧</strong>。', '中文男', 'Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.', stream=False)):
|
|
||||||
torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
|
||||||
```
|
|
||||||
|
|
||||||
#### Start web demo
|
#### Start web demo
|
||||||
|
|
||||||
You can use our web demo page to get familiar with CosyVoice quickly.
|
You can use our web demo page to get familiar with CosyVoice quickly.
|
||||||
|
|||||||
Binary file not shown.
|
Before Width: | Height: | Size: 94 KiB After Width: | Height: | Size: 120 KiB |
Binary file not shown.
@@ -23,7 +23,7 @@ import torch
|
|||||||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||||
sys.path.append('{}/../..'.format(ROOT_DIR))
|
sys.path.append('{}/../..'.format(ROOT_DIR))
|
||||||
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
||||||
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
from cosyvoice.cli.cosyvoice import AutoModel
|
||||||
from cosyvoice.utils.file_utils import logging
|
from cosyvoice.utils.file_utils import logging
|
||||||
|
|
||||||
|
|
||||||
@@ -57,15 +57,9 @@ def main():
|
|||||||
torch._C._jit_set_profiling_mode(False)
|
torch._C._jit_set_profiling_mode(False)
|
||||||
torch._C._jit_set_profiling_executor(False)
|
torch._C._jit_set_profiling_executor(False)
|
||||||
|
|
||||||
try:
|
model = AutoModel(model_dir=args.model_dir)
|
||||||
model = CosyVoice(args.model_dir)
|
|
||||||
except Exception:
|
|
||||||
try:
|
|
||||||
model = CosyVoice2(args.model_dir)
|
|
||||||
except Exception:
|
|
||||||
raise TypeError('no valid model_type!')
|
|
||||||
|
|
||||||
if not isinstance(model, CosyVoice2):
|
if model.__class__.__name__ == 'CosyVoice':
|
||||||
# 1. export llm text_encoder
|
# 1. export llm text_encoder
|
||||||
llm_text_encoder = model.model.llm.text_encoder
|
llm_text_encoder = model.model.llm.text_encoder
|
||||||
script = get_optimized_script(llm_text_encoder)
|
script = get_optimized_script(llm_text_encoder)
|
||||||
@@ -89,14 +83,16 @@ def main():
|
|||||||
script = get_optimized_script(flow_encoder.half())
|
script = get_optimized_script(flow_encoder.half())
|
||||||
script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir))
|
script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir))
|
||||||
logging.info('successfully export flow_encoder')
|
logging.info('successfully export flow_encoder')
|
||||||
else:
|
elif model.__class__.__name__ == 'CosyVoice2':
|
||||||
# 3. export flow encoder
|
# 1. export flow encoder
|
||||||
flow_encoder = model.model.flow.encoder
|
flow_encoder = model.model.flow.encoder
|
||||||
script = get_optimized_script(flow_encoder)
|
script = get_optimized_script(flow_encoder)
|
||||||
script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
|
script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
|
||||||
script = get_optimized_script(flow_encoder.half())
|
script = get_optimized_script(flow_encoder.half())
|
||||||
script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir))
|
script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir))
|
||||||
logging.info('successfully export flow_encoder')
|
logging.info('successfully export flow_encoder')
|
||||||
|
else:
|
||||||
|
raise ValueError('unsupported model type')
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|||||||
@@ -27,7 +27,7 @@ from tqdm import tqdm
|
|||||||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||||
sys.path.append('{}/../..'.format(ROOT_DIR))
|
sys.path.append('{}/../..'.format(ROOT_DIR))
|
||||||
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
||||||
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
from cosyvoice.cli.cosyvoice import AutoModel
|
||||||
from cosyvoice.utils.file_utils import logging
|
from cosyvoice.utils.file_utils import logging
|
||||||
|
|
||||||
|
|
||||||
@@ -58,13 +58,7 @@ def main():
|
|||||||
logging.basicConfig(level=logging.DEBUG,
|
logging.basicConfig(level=logging.DEBUG,
|
||||||
format='%(asctime)s %(levelname)s %(message)s')
|
format='%(asctime)s %(levelname)s %(message)s')
|
||||||
|
|
||||||
try:
|
model = AutoModel(model_dir=args.model_dir)
|
||||||
model = CosyVoice(args.model_dir)
|
|
||||||
except Exception:
|
|
||||||
try:
|
|
||||||
model = CosyVoice2(args.model_dir)
|
|
||||||
except Exception:
|
|
||||||
raise TypeError('no valid model_type!')
|
|
||||||
|
|
||||||
# 1. export flow decoder estimator
|
# 1. export flow decoder estimator
|
||||||
estimator = model.model.flow.decoder.estimator
|
estimator = model.model.flow.decoder.estimator
|
||||||
|
|||||||
@@ -1,126 +0,0 @@
|
|||||||
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
from __future__ import print_function
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import logging
|
|
||||||
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
|
||||||
import os
|
|
||||||
import torch
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
import torchaudio
|
|
||||||
from hyperpyyaml import load_hyperpyyaml
|
|
||||||
from tqdm import tqdm
|
|
||||||
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
|
|
||||||
from cosyvoice.dataset.dataset import Dataset
|
|
||||||
|
|
||||||
|
|
||||||
def get_args():
|
|
||||||
parser = argparse.ArgumentParser(description='inference with your model')
|
|
||||||
parser.add_argument('--config', required=True, help='config file')
|
|
||||||
parser.add_argument('--prompt_data', required=True, help='prompt data file')
|
|
||||||
parser.add_argument('--prompt_utt2data', required=True, help='prompt data file')
|
|
||||||
parser.add_argument('--tts_text', required=True, help='tts input file')
|
|
||||||
parser.add_argument('--qwen_pretrain_path', required=False, help='qwen pretrain path')
|
|
||||||
parser.add_argument('--llm_model', required=True, help='llm model file')
|
|
||||||
parser.add_argument('--flow_model', required=True, help='flow model file')
|
|
||||||
parser.add_argument('--hifigan_model', required=True, help='hifigan model file')
|
|
||||||
parser.add_argument('--gpu',
|
|
||||||
type=int,
|
|
||||||
default=-1,
|
|
||||||
help='gpu id for this rank, -1 for cpu')
|
|
||||||
parser.add_argument('--mode',
|
|
||||||
default='sft',
|
|
||||||
choices=['sft', 'zero_shot'],
|
|
||||||
help='inference mode')
|
|
||||||
parser.add_argument('--result_dir', required=True, help='asr result file')
|
|
||||||
args = parser.parse_args()
|
|
||||||
print(args)
|
|
||||||
return args
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
args = get_args()
|
|
||||||
logging.basicConfig(level=logging.DEBUG,
|
|
||||||
format='%(asctime)s %(levelname)s %(message)s')
|
|
||||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
|
|
||||||
|
|
||||||
# Init cosyvoice models from configs
|
|
||||||
use_cuda = args.gpu >= 0 and torch.cuda.is_available()
|
|
||||||
device = torch.device('cuda' if use_cuda else 'cpu')
|
|
||||||
try:
|
|
||||||
with open(args.config, 'r') as f:
|
|
||||||
configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': args.qwen_pretrain_path})
|
|
||||||
model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'])
|
|
||||||
except Exception:
|
|
||||||
try:
|
|
||||||
with open(args.config, 'r') as f:
|
|
||||||
configs = load_hyperpyyaml(f)
|
|
||||||
model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
|
|
||||||
except Exception:
|
|
||||||
raise TypeError('no valid model_type!')
|
|
||||||
|
|
||||||
model.load(args.llm_model, args.flow_model, args.hifigan_model)
|
|
||||||
|
|
||||||
test_dataset = Dataset(args.prompt_data, data_pipeline=configs['data_pipeline'], mode='inference', shuffle=False, partition=False,
|
|
||||||
tts_file=args.tts_text, prompt_utt2data=args.prompt_utt2data)
|
|
||||||
test_data_loader = DataLoader(test_dataset, batch_size=None, num_workers=0)
|
|
||||||
|
|
||||||
sample_rate = configs['sample_rate']
|
|
||||||
del configs
|
|
||||||
os.makedirs(args.result_dir, exist_ok=True)
|
|
||||||
fn = os.path.join(args.result_dir, 'wav.scp')
|
|
||||||
f = open(fn, 'w')
|
|
||||||
with torch.no_grad():
|
|
||||||
for _, batch in tqdm(enumerate(test_data_loader)):
|
|
||||||
utts = batch["utts"]
|
|
||||||
assert len(utts) == 1, "inference mode only support batchsize 1"
|
|
||||||
text_token = batch["text_token"].to(device)
|
|
||||||
text_token_len = batch["text_token_len"].to(device)
|
|
||||||
tts_index = batch["tts_index"]
|
|
||||||
tts_text_token = batch["tts_text_token"].to(device)
|
|
||||||
tts_text_token_len = batch["tts_text_token_len"].to(device)
|
|
||||||
speech_token = batch["speech_token"].to(device)
|
|
||||||
speech_token_len = batch["speech_token_len"].to(device)
|
|
||||||
speech_feat = batch["speech_feat"].to(device)
|
|
||||||
speech_feat_len = batch["speech_feat_len"].to(device)
|
|
||||||
utt_embedding = batch["utt_embedding"].to(device)
|
|
||||||
spk_embedding = batch["spk_embedding"].to(device)
|
|
||||||
if args.mode == 'sft':
|
|
||||||
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
|
||||||
'llm_embedding': spk_embedding, 'flow_embedding': spk_embedding}
|
|
||||||
else:
|
|
||||||
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
|
||||||
'prompt_text': text_token, 'prompt_text_len': text_token_len,
|
|
||||||
'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len,
|
|
||||||
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
|
|
||||||
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
|
|
||||||
'llm_embedding': utt_embedding, 'flow_embedding': utt_embedding}
|
|
||||||
tts_speeches = []
|
|
||||||
for model_output in model.tts(**model_input):
|
|
||||||
tts_speeches.append(model_output['tts_speech'])
|
|
||||||
tts_speeches = torch.concat(tts_speeches, dim=1)
|
|
||||||
tts_key = '{}_{}'.format(utts[0], tts_index[0])
|
|
||||||
tts_fn = os.path.join(args.result_dir, '{}.wav'.format(tts_key))
|
|
||||||
torchaudio.save(tts_fn, tts_speeches, sample_rate=sample_rate, backend='soundfile')
|
|
||||||
f.write('{} {}\n'.format(tts_key, tts_fn))
|
|
||||||
f.flush()
|
|
||||||
f.close()
|
|
||||||
logging.info('Result wav.scp saved in {}'.format(fn))
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
logging.warning('this code has been deprecated, please refer to README for CosyVoice inference usage!')
|
|
||||||
main()
|
|
||||||
@@ -19,7 +19,7 @@ from hyperpyyaml import load_hyperpyyaml
|
|||||||
from modelscope import snapshot_download
|
from modelscope import snapshot_download
|
||||||
import torch
|
import torch
|
||||||
from cosyvoice.cli.frontend import CosyVoiceFrontEnd
|
from cosyvoice.cli.frontend import CosyVoiceFrontEnd
|
||||||
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
|
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model, CosyVoice3Model
|
||||||
from cosyvoice.utils.file_utils import logging
|
from cosyvoice.utils.file_utils import logging
|
||||||
from cosyvoice.utils.class_utils import get_model_type
|
from cosyvoice.utils.class_utils import get_model_type
|
||||||
|
|
||||||
@@ -27,7 +27,6 @@ from cosyvoice.utils.class_utils import get_model_type
|
|||||||
class CosyVoice:
|
class CosyVoice:
|
||||||
|
|
||||||
def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False, trt_concurrent=1):
|
def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False, trt_concurrent=1):
|
||||||
self.instruct = True if '-Instruct' in model_dir else False
|
|
||||||
self.model_dir = model_dir
|
self.model_dir = model_dir
|
||||||
self.fp16 = fp16
|
self.fp16 = fp16
|
||||||
if not os.path.exists(model_dir):
|
if not os.path.exists(model_dir):
|
||||||
@@ -37,7 +36,7 @@ class CosyVoice:
|
|||||||
raise ValueError('{} not found!'.format(hyper_yaml_path))
|
raise ValueError('{} not found!'.format(hyper_yaml_path))
|
||||||
with open(hyper_yaml_path, 'r') as f:
|
with open(hyper_yaml_path, 'r') as f:
|
||||||
configs = load_hyperpyyaml(f)
|
configs = load_hyperpyyaml(f)
|
||||||
assert get_model_type(configs) != CosyVoice2Model, 'do not use {} for CosyVoice initialization!'.format(model_dir)
|
assert get_model_type(configs) == CosyVoiceModel, 'do not use {} for CosyVoice initialization!'.format(model_dir)
|
||||||
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
||||||
configs['feat_extractor'],
|
configs['feat_extractor'],
|
||||||
'{}/campplus.onnx'.format(model_dir),
|
'{}/campplus.onnx'.format(model_dir),
|
||||||
@@ -67,9 +66,9 @@ class CosyVoice:
|
|||||||
spks = list(self.frontend.spk2info.keys())
|
spks = list(self.frontend.spk2info.keys())
|
||||||
return spks
|
return spks
|
||||||
|
|
||||||
def add_zero_shot_spk(self, prompt_text, prompt_speech_16k, zero_shot_spk_id):
|
def add_zero_shot_spk(self, prompt_text, prompt_wav, zero_shot_spk_id):
|
||||||
assert zero_shot_spk_id != '', 'do not use empty zero_shot_spk_id'
|
assert zero_shot_spk_id != '', 'do not use empty zero_shot_spk_id'
|
||||||
model_input = self.frontend.frontend_zero_shot('', prompt_text, prompt_speech_16k, self.sample_rate, '')
|
model_input = self.frontend.frontend_zero_shot('', prompt_text, prompt_wav, self.sample_rate, '')
|
||||||
del model_input['text']
|
del model_input['text']
|
||||||
del model_input['text_len']
|
del model_input['text_len']
|
||||||
self.frontend.spk2info[zero_shot_spk_id] = model_input
|
self.frontend.spk2info[zero_shot_spk_id] = model_input
|
||||||
@@ -89,12 +88,14 @@ class CosyVoice:
|
|||||||
yield model_output
|
yield model_output
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
|
|
||||||
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, zero_shot_spk_id='', stream=False, speed=1.0, text_frontend=True):
|
def inference_zero_shot(self, tts_text, prompt_text, prompt_wav, zero_shot_spk_id='', stream=False, speed=1.0, text_frontend=True):
|
||||||
|
if self.__class__.__name__ == 'CosyVoice3' and '<|endofprompt|>' not in prompt_text + tts_text:
|
||||||
|
logging.warning('<|endofprompt|> not found in CosyVoice3 inference, check your input text')
|
||||||
prompt_text = self.frontend.text_normalize(prompt_text, split=False, text_frontend=text_frontend)
|
prompt_text = self.frontend.text_normalize(prompt_text, split=False, text_frontend=text_frontend)
|
||||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||||
if (not isinstance(i, Generator)) and len(i) < 0.5 * len(prompt_text):
|
if (not isinstance(i, Generator)) and len(i) < 0.5 * len(prompt_text):
|
||||||
logging.warning('synthesis text {} too short than prompt text {}, this may lead to bad performance'.format(i, prompt_text))
|
logging.warning('synthesis text {} too short than prompt text {}, this may lead to bad performance'.format(i, prompt_text))
|
||||||
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k, self.sample_rate, zero_shot_spk_id)
|
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_wav, self.sample_rate, zero_shot_spk_id)
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
logging.info('synthesis text {}'.format(i))
|
logging.info('synthesis text {}'.format(i))
|
||||||
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||||
@@ -103,9 +104,9 @@ class CosyVoice:
|
|||||||
yield model_output
|
yield model_output
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
|
|
||||||
def inference_cross_lingual(self, tts_text, prompt_speech_16k, zero_shot_spk_id='', stream=False, speed=1.0, text_frontend=True):
|
def inference_cross_lingual(self, tts_text, prompt_wav, zero_shot_spk_id='', stream=False, speed=1.0, text_frontend=True):
|
||||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||||
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate, zero_shot_spk_id)
|
model_input = self.frontend.frontend_cross_lingual(i, prompt_wav, self.sample_rate, zero_shot_spk_id)
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
logging.info('synthesis text {}'.format(i))
|
logging.info('synthesis text {}'.format(i))
|
||||||
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||||
@@ -115,9 +116,7 @@ class CosyVoice:
|
|||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
|
|
||||||
def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0, text_frontend=True):
|
def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0, text_frontend=True):
|
||||||
assert isinstance(self.model, CosyVoiceModel), 'inference_instruct is only implemented for CosyVoice!'
|
assert self.__class__.__name__ == 'CosyVoice', 'inference_instruct is only implemented for CosyVoice!'
|
||||||
if self.instruct is False:
|
|
||||||
raise ValueError('{} do not support instruct inference'.format(self.model_dir))
|
|
||||||
instruct_text = self.frontend.text_normalize(instruct_text, split=False, text_frontend=text_frontend)
|
instruct_text = self.frontend.text_normalize(instruct_text, split=False, text_frontend=text_frontend)
|
||||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||||
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
|
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
|
||||||
@@ -129,8 +128,8 @@ class CosyVoice:
|
|||||||
yield model_output
|
yield model_output
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
|
|
||||||
def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0):
|
def inference_vc(self, source_wav, prompt_wav, stream=False, speed=1.0):
|
||||||
model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k, self.sample_rate)
|
model_input = self.frontend.frontend_vc(source_wav, prompt_wav, self.sample_rate)
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||||
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
||||||
@@ -142,7 +141,6 @@ class CosyVoice:
|
|||||||
class CosyVoice2(CosyVoice):
|
class CosyVoice2(CosyVoice):
|
||||||
|
|
||||||
def __init__(self, model_dir, load_jit=False, load_trt=False, load_vllm=False, fp16=False, trt_concurrent=1):
|
def __init__(self, model_dir, load_jit=False, load_trt=False, load_vllm=False, fp16=False, trt_concurrent=1):
|
||||||
self.instruct = True if '-Instruct' in model_dir else False
|
|
||||||
self.model_dir = model_dir
|
self.model_dir = model_dir
|
||||||
self.fp16 = fp16
|
self.fp16 = fp16
|
||||||
if not os.path.exists(model_dir):
|
if not os.path.exists(model_dir):
|
||||||
@@ -160,9 +158,9 @@ class CosyVoice2(CosyVoice):
|
|||||||
'{}/spk2info.pt'.format(model_dir),
|
'{}/spk2info.pt'.format(model_dir),
|
||||||
configs['allowed_special'])
|
configs['allowed_special'])
|
||||||
self.sample_rate = configs['sample_rate']
|
self.sample_rate = configs['sample_rate']
|
||||||
if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or fp16 is True):
|
if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or load_vllm is True or fp16 is True):
|
||||||
load_jit, load_trt, fp16 = False, False, False
|
load_jit, load_trt, load_vllm, fp16 = False, False, False, False
|
||||||
logging.warning('no cuda device, set load_jit/load_trt/fp16 to False')
|
logging.warning('no cuda device, set load_jit/load_trt/load_vllm/fp16 to False')
|
||||||
self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'], fp16)
|
self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'], fp16)
|
||||||
self.model.load('{}/llm.pt'.format(model_dir),
|
self.model.load('{}/llm.pt'.format(model_dir),
|
||||||
'{}/flow.pt'.format(model_dir),
|
'{}/flow.pt'.format(model_dir),
|
||||||
@@ -178,13 +176,9 @@ class CosyVoice2(CosyVoice):
|
|||||||
self.fp16)
|
self.fp16)
|
||||||
del configs
|
del configs
|
||||||
|
|
||||||
def inference_instruct(self, *args, **kwargs):
|
def inference_instruct2(self, tts_text, instruct_text, prompt_wav, zero_shot_spk_id='', stream=False, speed=1.0, text_frontend=True):
|
||||||
raise NotImplementedError('inference_instruct is not implemented for CosyVoice2!')
|
|
||||||
|
|
||||||
def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, zero_shot_spk_id='', stream=False, speed=1.0, text_frontend=True):
|
|
||||||
assert isinstance(self.model, CosyVoice2Model), 'inference_instruct2 is only implemented for CosyVoice2!'
|
|
||||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||||
model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate, zero_shot_spk_id)
|
model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_wav, self.sample_rate, zero_shot_spk_id)
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
logging.info('synthesis text {}'.format(i))
|
logging.info('synthesis text {}'.format(i))
|
||||||
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||||
@@ -192,3 +186,55 @@ class CosyVoice2(CosyVoice):
|
|||||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||||
yield model_output
|
yield model_output
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
|
|
||||||
|
|
||||||
|
class CosyVoice3(CosyVoice2):
|
||||||
|
|
||||||
|
def __init__(self, model_dir, load_trt=False, load_vllm=False, fp16=False, trt_concurrent=1):
|
||||||
|
self.model_dir = model_dir
|
||||||
|
self.fp16 = fp16
|
||||||
|
if not os.path.exists(model_dir):
|
||||||
|
model_dir = snapshot_download(model_dir)
|
||||||
|
hyper_yaml_path = '{}/cosyvoice3.yaml'.format(model_dir)
|
||||||
|
if not os.path.exists(hyper_yaml_path):
|
||||||
|
raise ValueError('{} not found!'.format(hyper_yaml_path))
|
||||||
|
with open(hyper_yaml_path, 'r') as f:
|
||||||
|
configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')})
|
||||||
|
assert get_model_type(configs) == CosyVoice3Model, 'do not use {} for CosyVoice3 initialization!'.format(model_dir)
|
||||||
|
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
||||||
|
configs['feat_extractor'],
|
||||||
|
'{}/campplus.onnx'.format(model_dir),
|
||||||
|
'{}/speech_tokenizer_v3.onnx'.format(model_dir),
|
||||||
|
'{}/spk2info.pt'.format(model_dir),
|
||||||
|
configs['allowed_special'])
|
||||||
|
self.sample_rate = configs['sample_rate']
|
||||||
|
if torch.cuda.is_available() is False and (load_trt is True or fp16 is True):
|
||||||
|
load_trt, fp16 = False, False
|
||||||
|
logging.warning('no cuda device, set load_trt/fp16 to False')
|
||||||
|
self.model = CosyVoice3Model(configs['llm'], configs['flow'], configs['hift'], fp16)
|
||||||
|
self.model.load('{}/llm.pt'.format(model_dir),
|
||||||
|
'{}/flow.pt'.format(model_dir),
|
||||||
|
'{}/hift.pt'.format(model_dir))
|
||||||
|
if load_vllm:
|
||||||
|
self.model.load_vllm('{}/vllm'.format(model_dir))
|
||||||
|
if load_trt:
|
||||||
|
if self.fp16 is True:
|
||||||
|
logging.warning('DiT tensorRT fp16 engine have some performance issue, use at caution!')
|
||||||
|
self.model.load_trt('{}/flow.decoder.estimator.{}.mygpu.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
|
||||||
|
'{}/flow.decoder.estimator.fp32.onnx'.format(model_dir),
|
||||||
|
trt_concurrent,
|
||||||
|
self.fp16)
|
||||||
|
del configs
|
||||||
|
|
||||||
|
|
||||||
|
def AutoModel(**kwargs):
|
||||||
|
if not os.path.exists(kwargs['model_dir']):
|
||||||
|
kwargs['model_dir'] = snapshot_download(kwargs['model_dir'])
|
||||||
|
if os.path.exists('{}/cosyvoice.yaml'.format(kwargs['model_dir'])):
|
||||||
|
return CosyVoice(**kwargs)
|
||||||
|
elif os.path.exists('{}/cosyvoice2.yaml'.format(kwargs['model_dir'])):
|
||||||
|
return CosyVoice2(**kwargs)
|
||||||
|
elif os.path.exists('{}/cosyvoice3.yaml'.format(kwargs['model_dir'])):
|
||||||
|
return CosyVoice3(**kwargs)
|
||||||
|
else:
|
||||||
|
raise TypeError('No valid model type found!')
|
||||||
|
|||||||
@@ -20,19 +20,10 @@ import numpy as np
|
|||||||
import whisper
|
import whisper
|
||||||
from typing import Callable
|
from typing import Callable
|
||||||
import torchaudio.compliance.kaldi as kaldi
|
import torchaudio.compliance.kaldi as kaldi
|
||||||
import torchaudio
|
|
||||||
import os
|
import os
|
||||||
import re
|
import re
|
||||||
import inflect
|
import inflect
|
||||||
try:
|
from cosyvoice.utils.file_utils import logging, load_wav
|
||||||
import ttsfrd
|
|
||||||
use_ttsfrd = True
|
|
||||||
except ImportError:
|
|
||||||
print("failed to import ttsfrd, use wetext instead")
|
|
||||||
from wetext import Normalizer as ZhNormalizer
|
|
||||||
from wetext import Normalizer as EnNormalizer
|
|
||||||
use_ttsfrd = False
|
|
||||||
from cosyvoice.utils.file_utils import logging
|
|
||||||
from cosyvoice.utils.frontend_utils import contains_chinese, replace_blank, replace_corner_mark, remove_bracket, spell_out_number, split_paragraph, is_only_punctuation
|
from cosyvoice.utils.frontend_utils import contains_chinese, replace_blank, replace_corner_mark, remove_bracket, spell_out_number, split_paragraph, is_only_punctuation
|
||||||
|
|
||||||
|
|
||||||
@@ -60,17 +51,29 @@ class CosyVoiceFrontEnd:
|
|||||||
else:
|
else:
|
||||||
self.spk2info = {}
|
self.spk2info = {}
|
||||||
self.allowed_special = allowed_special
|
self.allowed_special = allowed_special
|
||||||
self.use_ttsfrd = use_ttsfrd
|
self.inflect_parser = inflect.engine()
|
||||||
if self.use_ttsfrd:
|
# NOTE compatible when no text frontend tool is avaliable
|
||||||
|
try:
|
||||||
|
import ttsfrd
|
||||||
self.frd = ttsfrd.TtsFrontendEngine()
|
self.frd = ttsfrd.TtsFrontendEngine()
|
||||||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||||
assert self.frd.initialize('{}/../../pretrained_models/CosyVoice-ttsfrd/resource'.format(ROOT_DIR)) is True, \
|
assert self.frd.initialize('{}/../../pretrained_models/CosyVoice-ttsfrd/resource'.format(ROOT_DIR)) is True, \
|
||||||
'failed to initialize ttsfrd resource'
|
'failed to initialize ttsfrd resource'
|
||||||
self.frd.set_lang_type('pinyinvg')
|
self.frd.set_lang_type('pinyinvg')
|
||||||
else:
|
self.text_frontend = 'ttsfrd'
|
||||||
|
logging.info('use ttsfrd frontend')
|
||||||
|
except:
|
||||||
|
try:
|
||||||
|
from wetext import Normalizer as ZhNormalizer
|
||||||
|
from wetext import Normalizer as EnNormalizer
|
||||||
self.zh_tn_model = ZhNormalizer(remove_erhua=False)
|
self.zh_tn_model = ZhNormalizer(remove_erhua=False)
|
||||||
self.en_tn_model = EnNormalizer()
|
self.en_tn_model = EnNormalizer()
|
||||||
self.inflect_parser = inflect.engine()
|
self.text_frontend = 'wetext'
|
||||||
|
logging.info('use wetext frontend')
|
||||||
|
except:
|
||||||
|
self.text_frontend = ''
|
||||||
|
logging.info('no frontend is avaliable')
|
||||||
|
|
||||||
|
|
||||||
def _extract_text_token(self, text):
|
def _extract_text_token(self, text):
|
||||||
if isinstance(text, Generator):
|
if isinstance(text, Generator):
|
||||||
@@ -89,7 +92,8 @@ class CosyVoiceFrontEnd:
|
|||||||
for i in range(text_token.shape[1]):
|
for i in range(text_token.shape[1]):
|
||||||
yield text_token[:, i: i + 1]
|
yield text_token[:, i: i + 1]
|
||||||
|
|
||||||
def _extract_speech_token(self, speech):
|
def _extract_speech_token(self, prompt_wav):
|
||||||
|
speech = load_wav(prompt_wav, 16000)
|
||||||
assert speech.shape[1] / 16000 <= 30, 'do not support extract speech token for audio longer than 30s'
|
assert speech.shape[1] / 16000 <= 30, 'do not support extract speech token for audio longer than 30s'
|
||||||
feat = whisper.log_mel_spectrogram(speech, n_mels=128)
|
feat = whisper.log_mel_spectrogram(speech, n_mels=128)
|
||||||
speech_token = self.speech_tokenizer_session.run(None,
|
speech_token = self.speech_tokenizer_session.run(None,
|
||||||
@@ -101,7 +105,8 @@ class CosyVoiceFrontEnd:
|
|||||||
speech_token_len = torch.tensor([speech_token.shape[1]], dtype=torch.int32).to(self.device)
|
speech_token_len = torch.tensor([speech_token.shape[1]], dtype=torch.int32).to(self.device)
|
||||||
return speech_token, speech_token_len
|
return speech_token, speech_token_len
|
||||||
|
|
||||||
def _extract_spk_embedding(self, speech):
|
def _extract_spk_embedding(self, prompt_wav):
|
||||||
|
speech = load_wav(prompt_wav, 16000)
|
||||||
feat = kaldi.fbank(speech,
|
feat = kaldi.fbank(speech,
|
||||||
num_mel_bins=80,
|
num_mel_bins=80,
|
||||||
dither=0,
|
dither=0,
|
||||||
@@ -112,7 +117,8 @@ class CosyVoiceFrontEnd:
|
|||||||
embedding = torch.tensor([embedding]).to(self.device)
|
embedding = torch.tensor([embedding]).to(self.device)
|
||||||
return embedding
|
return embedding
|
||||||
|
|
||||||
def _extract_speech_feat(self, speech):
|
def _extract_speech_feat(self, prompt_wav):
|
||||||
|
speech = load_wav(prompt_wav, 24000)
|
||||||
speech_feat = self.feat_extractor(speech).squeeze(dim=0).transpose(0, 1).to(self.device)
|
speech_feat = self.feat_extractor(speech).squeeze(dim=0).transpose(0, 1).to(self.device)
|
||||||
speech_feat = speech_feat.unsqueeze(dim=0)
|
speech_feat = speech_feat.unsqueeze(dim=0)
|
||||||
speech_feat_len = torch.tensor([speech_feat.shape[1]], dtype=torch.int32).to(self.device)
|
speech_feat_len = torch.tensor([speech_feat.shape[1]], dtype=torch.int32).to(self.device)
|
||||||
@@ -122,14 +128,18 @@ class CosyVoiceFrontEnd:
|
|||||||
if isinstance(text, Generator):
|
if isinstance(text, Generator):
|
||||||
logging.info('get tts_text generator, will skip text_normalize!')
|
logging.info('get tts_text generator, will skip text_normalize!')
|
||||||
return [text]
|
return [text]
|
||||||
|
# NOTE skip text_frontend when ssml symbol in text
|
||||||
|
if '<|' in text and '|>' in text:
|
||||||
|
text_frontend = False
|
||||||
if text_frontend is False or text == '':
|
if text_frontend is False or text == '':
|
||||||
return [text] if split is True else text
|
return [text] if split is True else text
|
||||||
text = text.strip()
|
text = text.strip()
|
||||||
if self.use_ttsfrd:
|
if self.text_frontend == 'ttsfrd':
|
||||||
texts = [i["text"] for i in json.loads(self.frd.do_voicegen_frd(text))["sentences"]]
|
texts = [i["text"] for i in json.loads(self.frd.do_voicegen_frd(text))["sentences"]]
|
||||||
text = ''.join(texts)
|
text = ''.join(texts)
|
||||||
else:
|
else:
|
||||||
if contains_chinese(text):
|
if contains_chinese(text):
|
||||||
|
if self.text_frontend == 'wetext':
|
||||||
text = self.zh_tn_model.normalize(text)
|
text = self.zh_tn_model.normalize(text)
|
||||||
text = text.replace("\n", "")
|
text = text.replace("\n", "")
|
||||||
text = replace_blank(text)
|
text = replace_blank(text)
|
||||||
@@ -141,6 +151,7 @@ class CosyVoiceFrontEnd:
|
|||||||
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "zh", token_max_n=80,
|
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "zh", token_max_n=80,
|
||||||
token_min_n=60, merge_len=20, comma_split=False))
|
token_min_n=60, merge_len=20, comma_split=False))
|
||||||
else:
|
else:
|
||||||
|
if self.text_frontend == 'wetext':
|
||||||
text = self.en_tn_model.normalize(text)
|
text = self.en_tn_model.normalize(text)
|
||||||
text = spell_out_number(text, self.inflect_parser)
|
text = spell_out_number(text, self.inflect_parser)
|
||||||
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80,
|
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80,
|
||||||
@@ -154,32 +165,31 @@ class CosyVoiceFrontEnd:
|
|||||||
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, 'llm_embedding': embedding, 'flow_embedding': embedding}
|
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, 'llm_embedding': embedding, 'flow_embedding': embedding}
|
||||||
return model_input
|
return model_input
|
||||||
|
|
||||||
def frontend_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, resample_rate, zero_shot_spk_id):
|
def frontend_zero_shot(self, tts_text, prompt_text, prompt_wav, resample_rate, zero_shot_spk_id):
|
||||||
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
||||||
if zero_shot_spk_id == '':
|
if zero_shot_spk_id == '':
|
||||||
prompt_text_token, prompt_text_token_len = self._extract_text_token(prompt_text)
|
prompt_text_token, prompt_text_token_len = self._extract_text_token(prompt_text)
|
||||||
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
|
speech_feat, speech_feat_len = self._extract_speech_feat(prompt_wav)
|
||||||
speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
|
speech_token, speech_token_len = self._extract_speech_token(prompt_wav)
|
||||||
speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
|
||||||
if resample_rate == 24000:
|
if resample_rate == 24000:
|
||||||
# cosyvoice2, force speech_feat % speech_token = 2
|
# cosyvoice2, force speech_feat % speech_token = 2
|
||||||
token_len = min(int(speech_feat.shape[1] / 2), speech_token.shape[1])
|
token_len = min(int(speech_feat.shape[1] / 2), speech_token.shape[1])
|
||||||
speech_feat, speech_feat_len[:] = speech_feat[:, :2 * token_len], 2 * token_len
|
speech_feat, speech_feat_len[:] = speech_feat[:, :2 * token_len], 2 * token_len
|
||||||
speech_token, speech_token_len[:] = speech_token[:, :token_len], token_len
|
speech_token, speech_token_len[:] = speech_token[:, :token_len], token_len
|
||||||
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
embedding = self._extract_spk_embedding(prompt_wav)
|
||||||
model_input = {'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len,
|
model_input = {'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len,
|
||||||
'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len,
|
'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len,
|
||||||
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
|
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
|
||||||
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
|
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
|
||||||
'llm_embedding': embedding, 'flow_embedding': embedding}
|
'llm_embedding': embedding, 'flow_embedding': embedding}
|
||||||
else:
|
else:
|
||||||
model_input = self.spk2info[zero_shot_spk_id]
|
model_input = {**self.spk2info[zero_shot_spk_id]}
|
||||||
model_input['text'] = tts_text_token
|
model_input['text'] = tts_text_token
|
||||||
model_input['text_len'] = tts_text_token_len
|
model_input['text_len'] = tts_text_token_len
|
||||||
return model_input
|
return model_input
|
||||||
|
|
||||||
def frontend_cross_lingual(self, tts_text, prompt_speech_16k, resample_rate, zero_shot_spk_id):
|
def frontend_cross_lingual(self, tts_text, prompt_wav, resample_rate, zero_shot_spk_id):
|
||||||
model_input = self.frontend_zero_shot(tts_text, '', prompt_speech_16k, resample_rate, zero_shot_spk_id)
|
model_input = self.frontend_zero_shot(tts_text, '', prompt_wav, resample_rate, zero_shot_spk_id)
|
||||||
# in cross lingual mode, we remove prompt in llm
|
# in cross lingual mode, we remove prompt in llm
|
||||||
del model_input['prompt_text']
|
del model_input['prompt_text']
|
||||||
del model_input['prompt_text_len']
|
del model_input['prompt_text_len']
|
||||||
@@ -191,22 +201,21 @@ class CosyVoiceFrontEnd:
|
|||||||
model_input = self.frontend_sft(tts_text, spk_id)
|
model_input = self.frontend_sft(tts_text, spk_id)
|
||||||
# in instruct mode, we remove spk_embedding in llm due to information leakage
|
# in instruct mode, we remove spk_embedding in llm due to information leakage
|
||||||
del model_input['llm_embedding']
|
del model_input['llm_embedding']
|
||||||
instruct_text_token, instruct_text_token_len = self._extract_text_token(instruct_text + '<endofprompt>')
|
instruct_text_token, instruct_text_token_len = self._extract_text_token(instruct_text)
|
||||||
model_input['prompt_text'] = instruct_text_token
|
model_input['prompt_text'] = instruct_text_token
|
||||||
model_input['prompt_text_len'] = instruct_text_token_len
|
model_input['prompt_text_len'] = instruct_text_token_len
|
||||||
return model_input
|
return model_input
|
||||||
|
|
||||||
def frontend_instruct2(self, tts_text, instruct_text, prompt_speech_16k, resample_rate, zero_shot_spk_id):
|
def frontend_instruct2(self, tts_text, instruct_text, prompt_wav, resample_rate, zero_shot_spk_id):
|
||||||
model_input = self.frontend_zero_shot(tts_text, instruct_text + '<|endofprompt|>', prompt_speech_16k, resample_rate, zero_shot_spk_id)
|
model_input = self.frontend_zero_shot(tts_text, instruct_text, prompt_wav, resample_rate, zero_shot_spk_id)
|
||||||
del model_input['llm_prompt_speech_token']
|
del model_input['llm_prompt_speech_token']
|
||||||
del model_input['llm_prompt_speech_token_len']
|
del model_input['llm_prompt_speech_token_len']
|
||||||
return model_input
|
return model_input
|
||||||
|
|
||||||
def frontend_vc(self, source_speech_16k, prompt_speech_16k, resample_rate):
|
def frontend_vc(self, source_speech_16k, prompt_wav, resample_rate):
|
||||||
prompt_speech_token, prompt_speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
prompt_speech_token, prompt_speech_token_len = self._extract_speech_token(prompt_wav)
|
||||||
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
|
prompt_speech_feat, prompt_speech_feat_len = self._extract_speech_feat(prompt_wav)
|
||||||
prompt_speech_feat, prompt_speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
|
embedding = self._extract_spk_embedding(prompt_wav)
|
||||||
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
|
||||||
source_speech_token, source_speech_token_len = self._extract_speech_token(source_speech_16k)
|
source_speech_token, source_speech_token_len = self._extract_speech_token(source_speech_16k)
|
||||||
model_input = {'source_speech_token': source_speech_token, 'source_speech_token_len': source_speech_token_len,
|
model_input = {'source_speech_token': source_speech_token, 'source_speech_token_len': source_speech_token_len,
|
||||||
'flow_prompt_speech_token': prompt_speech_token, 'flow_prompt_speech_token_len': prompt_speech_token_len,
|
'flow_prompt_speech_token': prompt_speech_token, 'flow_prompt_speech_token_len': prompt_speech_token_len,
|
||||||
|
|||||||
@@ -38,9 +38,6 @@ class CosyVoiceModel:
|
|||||||
self.flow = flow
|
self.flow = flow
|
||||||
self.hift = hift
|
self.hift = hift
|
||||||
self.fp16 = fp16
|
self.fp16 = fp16
|
||||||
if self.fp16 is True:
|
|
||||||
self.llm.half()
|
|
||||||
self.flow.half()
|
|
||||||
self.token_min_hop_len = 2 * self.flow.input_frame_rate
|
self.token_min_hop_len = 2 * self.flow.input_frame_rate
|
||||||
self.token_max_hop_len = 4 * self.flow.input_frame_rate
|
self.token_max_hop_len = 4 * self.flow.input_frame_rate
|
||||||
self.token_overlap_len = 20
|
self.token_overlap_len = 20
|
||||||
@@ -63,6 +60,7 @@ class CosyVoiceModel:
|
|||||||
self.mel_overlap_dict = {}
|
self.mel_overlap_dict = {}
|
||||||
self.flow_cache_dict = {}
|
self.flow_cache_dict = {}
|
||||||
self.hift_cache_dict = {}
|
self.hift_cache_dict = {}
|
||||||
|
self.silent_tokens = []
|
||||||
|
|
||||||
def load(self, llm_model, flow_model, hift_model):
|
def load(self, llm_model, flow_model, hift_model):
|
||||||
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True)
|
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True)
|
||||||
@@ -101,25 +99,32 @@ class CosyVoiceModel:
|
|||||||
return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}
|
return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}
|
||||||
|
|
||||||
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
||||||
|
cur_silent_token_num, max_silent_token_num = 0, 5
|
||||||
with self.llm_context, torch.cuda.amp.autocast(self.fp16 is True and hasattr(self.llm, 'vllm') is False):
|
with self.llm_context, torch.cuda.amp.autocast(self.fp16 is True and hasattr(self.llm, 'vllm') is False):
|
||||||
if isinstance(text, Generator):
|
if isinstance(text, Generator):
|
||||||
assert isinstance(self, CosyVoice2Model) and not hasattr(self.llm, 'vllm'), 'streaming input text is only implemented for CosyVoice2 and do not support vllm!'
|
assert (self.__class__.__name__ != 'CosyVoiceModel') and not hasattr(self.llm, 'vllm'), 'streaming input text is only implemented for CosyVoice2/3 and do not support vllm!'
|
||||||
for i in self.llm.inference_bistream(text=text,
|
token_generator = self.llm.inference_bistream(text=text,
|
||||||
prompt_text=prompt_text.to(self.device),
|
prompt_text=prompt_text.to(self.device),
|
||||||
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
|
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
||||||
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
|
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
embedding=llm_embedding.to(self.device)):
|
embedding=llm_embedding.to(self.device))
|
||||||
self.tts_speech_token_dict[uuid].append(i)
|
|
||||||
else:
|
else:
|
||||||
for i in self.llm.inference(text=text.to(self.device),
|
token_generator = self.llm.inference(text=text.to(self.device),
|
||||||
text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),
|
text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
prompt_text=prompt_text.to(self.device),
|
prompt_text=prompt_text.to(self.device),
|
||||||
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
|
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
||||||
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
|
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
embedding=llm_embedding.to(self.device),
|
embedding=llm_embedding.to(self.device),
|
||||||
uuid=uuid):
|
uuid=uuid)
|
||||||
|
for i in token_generator:
|
||||||
|
if i in self.silent_tokens:
|
||||||
|
cur_silent_token_num += 1
|
||||||
|
if cur_silent_token_num > max_silent_token_num:
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
cur_silent_token_num = 0
|
||||||
self.tts_speech_token_dict[uuid].append(i)
|
self.tts_speech_token_dict[uuid].append(i)
|
||||||
self.llm_end_dict[uuid] = True
|
self.llm_end_dict[uuid] = True
|
||||||
|
|
||||||
@@ -129,7 +134,7 @@ class CosyVoiceModel:
|
|||||||
|
|
||||||
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0):
|
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0):
|
||||||
with torch.cuda.amp.autocast(self.fp16):
|
with torch.cuda.amp.autocast(self.fp16):
|
||||||
tts_mel, self.flow_cache_dict[uuid] = self.flow.inference(token=token.to(self.device),
|
tts_mel, self.flow_cache_dict[uuid] = self.flow.inference(token=token.to(self.device, dtype=torch.int32),
|
||||||
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
prompt_token=prompt_token.to(self.device),
|
prompt_token=prompt_token.to(self.device),
|
||||||
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
@@ -249,9 +254,6 @@ class CosyVoice2Model(CosyVoiceModel):
|
|||||||
self.flow = flow
|
self.flow = flow
|
||||||
self.hift = hift
|
self.hift = hift
|
||||||
self.fp16 = fp16
|
self.fp16 = fp16
|
||||||
if self.fp16 is True:
|
|
||||||
self.llm.half()
|
|
||||||
self.flow.half()
|
|
||||||
# NOTE must matching training static_chunk_size
|
# NOTE must matching training static_chunk_size
|
||||||
self.token_hop_len = 25
|
self.token_hop_len = 25
|
||||||
# hift cache
|
# hift cache
|
||||||
@@ -266,6 +268,7 @@ class CosyVoice2Model(CosyVoiceModel):
|
|||||||
self.tts_speech_token_dict = {}
|
self.tts_speech_token_dict = {}
|
||||||
self.llm_end_dict = {}
|
self.llm_end_dict = {}
|
||||||
self.hift_cache_dict = {}
|
self.hift_cache_dict = {}
|
||||||
|
self.silent_tokens = []
|
||||||
|
|
||||||
def load_jit(self, flow_encoder_model):
|
def load_jit(self, flow_encoder_model):
|
||||||
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
||||||
@@ -284,7 +287,7 @@ class CosyVoice2Model(CosyVoiceModel):
|
|||||||
|
|
||||||
def token2wav(self, token, prompt_token, prompt_feat, embedding, token_offset, uuid, stream=False, finalize=False, speed=1.0):
|
def token2wav(self, token, prompt_token, prompt_feat, embedding, token_offset, uuid, stream=False, finalize=False, speed=1.0):
|
||||||
with torch.cuda.amp.autocast(self.fp16):
|
with torch.cuda.amp.autocast(self.fp16):
|
||||||
tts_mel, _ = self.flow.inference(token=token.to(self.device),
|
tts_mel, _ = self.flow.inference(token=token.to(self.device, dtype=torch.int32),
|
||||||
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
prompt_token=prompt_token.to(self.device),
|
prompt_token=prompt_token.to(self.device),
|
||||||
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
@@ -384,3 +387,55 @@ class CosyVoice2Model(CosyVoiceModel):
|
|||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
torch.cuda.current_stream().synchronize()
|
torch.cuda.current_stream().synchronize()
|
||||||
|
|
||||||
|
|
||||||
|
class CosyVoice3Model(CosyVoice2Model):
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
llm: torch.nn.Module,
|
||||||
|
flow: torch.nn.Module,
|
||||||
|
hift: torch.nn.Module,
|
||||||
|
fp16: bool = False):
|
||||||
|
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||||
|
self.llm = llm
|
||||||
|
self.flow = flow
|
||||||
|
self.hift = hift
|
||||||
|
self.fp16 = fp16
|
||||||
|
# NOTE must matching training static_chunk_size
|
||||||
|
self.token_hop_len = 25
|
||||||
|
# rtf and decoding related
|
||||||
|
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
||||||
|
self.lock = threading.Lock()
|
||||||
|
# dict used to store session related variable
|
||||||
|
self.tts_speech_token_dict = {}
|
||||||
|
self.llm_end_dict = {}
|
||||||
|
self.hift_cache_dict = {}
|
||||||
|
# FSQ silent and breath token
|
||||||
|
self.silent_tokens = [1, 2, 28, 29, 55, 248, 494, 2241, 2242, 2322, 2323]
|
||||||
|
|
||||||
|
def token2wav(self, token, prompt_token, prompt_feat, embedding, token_offset, uuid, stream=False, finalize=False, speed=1.0):
|
||||||
|
with torch.cuda.amp.autocast(self.fp16):
|
||||||
|
tts_mel, _ = self.flow.inference(token=token.to(self.device, dtype=torch.int32),
|
||||||
|
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
|
prompt_token=prompt_token.to(self.device),
|
||||||
|
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
|
prompt_feat=prompt_feat.to(self.device),
|
||||||
|
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
|
embedding=embedding.to(self.device),
|
||||||
|
streaming=stream,
|
||||||
|
finalize=finalize)
|
||||||
|
tts_mel = tts_mel[:, :, token_offset * self.flow.token_mel_ratio:]
|
||||||
|
# append mel cache
|
||||||
|
if self.hift_cache_dict[uuid] is not None:
|
||||||
|
hift_cache_mel = self.hift_cache_dict[uuid]['mel']
|
||||||
|
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
|
||||||
|
self.hift_cache_dict[uuid]['mel'] = tts_mel
|
||||||
|
else:
|
||||||
|
self.hift_cache_dict[uuid] = {'mel': tts_mel, 'speech_offset': 0}
|
||||||
|
if speed != 1.0:
|
||||||
|
assert token_offset == 0 and finalize is True, 'speed change only support non-stream inference mode'
|
||||||
|
tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
|
||||||
|
tts_speech, _ = self.hift.inference(speech_feat=tts_mel, finalize=finalize)
|
||||||
|
tts_speech = tts_speech[:, self.hift_cache_dict[uuid]['speech_offset']:]
|
||||||
|
self.hift_cache_dict[uuid]['speech_offset'] += tts_speech.shape[1]
|
||||||
|
return tts_speech
|
||||||
|
|||||||
@@ -145,7 +145,11 @@ def Dataset(data_list_file,
|
|||||||
shuffle=shuffle,
|
shuffle=shuffle,
|
||||||
partition=partition)
|
partition=partition)
|
||||||
# map partial arg to padding func
|
# map partial arg to padding func
|
||||||
data_pipeline[-1] = partial(data_pipeline[-1], gan=gan, dpo=dpo)
|
for i in range(1, len(data_pipeline)):
|
||||||
|
if data_pipeline[i].func.__name__ == 'compute_fbank':
|
||||||
|
data_pipeline[i] = partial(data_pipeline[i], token_mel_ratio=0)
|
||||||
|
if data_pipeline[i].func.__name__ == 'padding':
|
||||||
|
data_pipeline[i] = partial(data_pipeline[i], gan=gan, dpo=dpo)
|
||||||
for func in data_pipeline:
|
for func in data_pipeline:
|
||||||
dataset = Processor(dataset, func, mode=mode)
|
dataset = Processor(dataset, func, mode=mode)
|
||||||
return dataset
|
return dataset
|
||||||
|
|||||||
@@ -26,7 +26,7 @@ import pyworld as pw
|
|||||||
AUDIO_FORMAT_SETS = {'flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma'}
|
AUDIO_FORMAT_SETS = {'flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma'}
|
||||||
|
|
||||||
|
|
||||||
def parquet_opener(data, mode='train', tts_data={}):
|
def parquet_opener(data, mode='train'):
|
||||||
""" Give url or local file, return file descriptor
|
""" Give url or local file, return file descriptor
|
||||||
Inplace operation.
|
Inplace operation.
|
||||||
|
|
||||||
@@ -44,12 +44,8 @@ def parquet_opener(data, mode='train', tts_data={}):
|
|||||||
df = df.to_pandas()
|
df = df.to_pandas()
|
||||||
for i in range(len(df)):
|
for i in range(len(df)):
|
||||||
sample.update(dict(df.loc[i]))
|
sample.update(dict(df.loc[i]))
|
||||||
if mode == 'train':
|
|
||||||
# NOTE do not return sample directly, must initialize a new dict
|
# NOTE do not return sample directly, must initialize a new dict
|
||||||
yield {**sample}
|
yield {**sample}
|
||||||
else:
|
|
||||||
for index, text in enumerate(tts_data[df.loc[i, 'utt']]):
|
|
||||||
yield {**sample, 'tts_index': index, 'tts_text': text}
|
|
||||||
except Exception as ex:
|
except Exception as ex:
|
||||||
logging.warning('Failed to open {}, ex info {}'.format(url, ex))
|
logging.warning('Failed to open {}, ex info {}'.format(url, ex))
|
||||||
|
|
||||||
@@ -242,6 +238,10 @@ def tokenize(data, get_tokenizer, allowed_special, mode='train'):
|
|||||||
for sample in data:
|
for sample in data:
|
||||||
assert 'text' in sample
|
assert 'text' in sample
|
||||||
sample['text_token'] = tokenizer.encode(sample['text'], allowed_special=allowed_special)
|
sample['text_token'] = tokenizer.encode(sample['text'], allowed_special=allowed_special)
|
||||||
|
if 'instruct' in sample:
|
||||||
|
sample['instruct_token'] = tokenizer.encode(sample['instruct'], allowed_special=allowed_special)
|
||||||
|
else:
|
||||||
|
sample['instruct_token'] = tokenizer.encode('', allowed_special=allowed_special)
|
||||||
yield sample
|
yield sample
|
||||||
|
|
||||||
|
|
||||||
@@ -390,6 +390,9 @@ def padding(data, use_spk_embedding, mode='train', gan=False, dpo=False):
|
|||||||
text_token = [torch.tensor(sample[i]['text_token']) for i in order]
|
text_token = [torch.tensor(sample[i]['text_token']) for i in order]
|
||||||
text_token_len = torch.tensor([i.size(0) for i in text_token], dtype=torch.int32)
|
text_token_len = torch.tensor([i.size(0) for i in text_token], dtype=torch.int32)
|
||||||
text_token = pad_sequence(text_token, batch_first=True, padding_value=0)
|
text_token = pad_sequence(text_token, batch_first=True, padding_value=0)
|
||||||
|
instruct_token = [torch.tensor(sample[i]['instruct_token']) for i in order]
|
||||||
|
instruct_token_len = torch.tensor([i.size(0) for i in instruct_token], dtype=torch.int32)
|
||||||
|
instruct_token = pad_sequence(instruct_token, batch_first=True, padding_value=0)
|
||||||
utt_embedding = torch.stack([sample[i]['utt_embedding'] for i in order], dim=0)
|
utt_embedding = torch.stack([sample[i]['utt_embedding'] for i in order], dim=0)
|
||||||
spk_embedding = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0)
|
spk_embedding = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0)
|
||||||
batch = {
|
batch = {
|
||||||
@@ -403,6 +406,8 @@ def padding(data, use_spk_embedding, mode='train', gan=False, dpo=False):
|
|||||||
"text": text,
|
"text": text,
|
||||||
"text_token": text_token,
|
"text_token": text_token,
|
||||||
"text_token_len": text_token_len,
|
"text_token_len": text_token_len,
|
||||||
|
"instruct_token": instruct_token,
|
||||||
|
"instruct_token_len": instruct_token_len,
|
||||||
"utt_embedding": utt_embedding,
|
"utt_embedding": utt_embedding,
|
||||||
"spk_embedding": spk_embedding,
|
"spk_embedding": spk_embedding,
|
||||||
}
|
}
|
||||||
|
|||||||
176
cosyvoice/flow/DiT/dit.py
Normal file
176
cosyvoice/flow/DiT/dit.py
Normal file
@@ -0,0 +1,176 @@
|
|||||||
|
|
||||||
|
"""
|
||||||
|
ein notation:
|
||||||
|
b - batch
|
||||||
|
n - sequence
|
||||||
|
nt - text sequence
|
||||||
|
nw - raw wave length
|
||||||
|
d - dimension
|
||||||
|
"""
|
||||||
|
|
||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from einops import repeat
|
||||||
|
from x_transformers.x_transformers import RotaryEmbedding
|
||||||
|
from cosyvoice.utils.mask import add_optional_chunk_mask
|
||||||
|
from cosyvoice.flow.DiT.modules import (
|
||||||
|
TimestepEmbedding,
|
||||||
|
ConvNeXtV2Block,
|
||||||
|
CausalConvPositionEmbedding,
|
||||||
|
DiTBlock,
|
||||||
|
AdaLayerNormZero_Final,
|
||||||
|
precompute_freqs_cis,
|
||||||
|
get_pos_embed_indices,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# Text embedding
|
||||||
|
|
||||||
|
|
||||||
|
class TextEmbedding(nn.Module):
|
||||||
|
def __init__(self, text_num_embeds, text_dim, conv_layers=0, conv_mult=2):
|
||||||
|
super().__init__()
|
||||||
|
self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token
|
||||||
|
|
||||||
|
if conv_layers > 0:
|
||||||
|
self.extra_modeling = True
|
||||||
|
self.precompute_max_pos = 4096 # ~44s of 24khz audio
|
||||||
|
self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, self.precompute_max_pos), persistent=False)
|
||||||
|
self.text_blocks = nn.Sequential(
|
||||||
|
*[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)]
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
self.extra_modeling = False
|
||||||
|
|
||||||
|
def forward(self, text: int["b nt"], seq_len, drop_text=False): # noqa: F722
|
||||||
|
batch, text_len = text.shape[0], text.shape[1]
|
||||||
|
text = text + 1 # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx()
|
||||||
|
text = text[:, :seq_len] # curtail if character tokens are more than the mel spec tokens
|
||||||
|
text = F.pad(text, (0, seq_len - text_len), value=0)
|
||||||
|
|
||||||
|
if drop_text: # cfg for text
|
||||||
|
text = torch.zeros_like(text)
|
||||||
|
|
||||||
|
text = self.text_embed(text) # b n -> b n d
|
||||||
|
|
||||||
|
# possible extra modeling
|
||||||
|
if self.extra_modeling:
|
||||||
|
# sinus pos emb
|
||||||
|
batch_start = torch.zeros((batch,), dtype=torch.long)
|
||||||
|
pos_idx = get_pos_embed_indices(batch_start, seq_len, max_pos=self.precompute_max_pos)
|
||||||
|
text_pos_embed = self.freqs_cis[pos_idx]
|
||||||
|
text = text + text_pos_embed
|
||||||
|
|
||||||
|
# convnextv2 blocks
|
||||||
|
text = self.text_blocks(text)
|
||||||
|
|
||||||
|
return text
|
||||||
|
|
||||||
|
|
||||||
|
# noised input audio and context mixing embedding
|
||||||
|
|
||||||
|
|
||||||
|
class InputEmbedding(nn.Module):
|
||||||
|
def __init__(self, mel_dim, text_dim, out_dim, spk_dim=None):
|
||||||
|
super().__init__()
|
||||||
|
spk_dim = 0 if spk_dim is None else spk_dim
|
||||||
|
self.spk_dim = spk_dim
|
||||||
|
self.proj = nn.Linear(mel_dim * 2 + text_dim + spk_dim, out_dim)
|
||||||
|
self.conv_pos_embed = CausalConvPositionEmbedding(dim=out_dim)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
x: float["b n d"],
|
||||||
|
cond: float["b n d"],
|
||||||
|
text_embed: float["b n d"],
|
||||||
|
spks: float["b d"],
|
||||||
|
):
|
||||||
|
to_cat = [x, cond, text_embed]
|
||||||
|
if self.spk_dim > 0:
|
||||||
|
spks = repeat(spks, "b c -> b t c", t=x.shape[1])
|
||||||
|
to_cat.append(spks)
|
||||||
|
|
||||||
|
x = self.proj(torch.cat(to_cat, dim=-1))
|
||||||
|
x = self.conv_pos_embed(x) + x
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
# Transformer backbone using DiT blocks
|
||||||
|
|
||||||
|
|
||||||
|
class DiT(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
dim,
|
||||||
|
depth=8,
|
||||||
|
heads=8,
|
||||||
|
dim_head=64,
|
||||||
|
dropout=0.1,
|
||||||
|
ff_mult=4,
|
||||||
|
mel_dim=80,
|
||||||
|
mu_dim=None,
|
||||||
|
long_skip_connection=False,
|
||||||
|
spk_dim=None,
|
||||||
|
out_channels=None,
|
||||||
|
static_chunk_size=50,
|
||||||
|
num_decoding_left_chunks=2
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.time_embed = TimestepEmbedding(dim)
|
||||||
|
if mu_dim is None:
|
||||||
|
mu_dim = mel_dim
|
||||||
|
self.input_embed = InputEmbedding(mel_dim, mu_dim, dim, spk_dim)
|
||||||
|
|
||||||
|
self.rotary_embed = RotaryEmbedding(dim_head)
|
||||||
|
|
||||||
|
self.dim = dim
|
||||||
|
self.depth = depth
|
||||||
|
|
||||||
|
self.transformer_blocks = nn.ModuleList(
|
||||||
|
[DiTBlock(dim=dim, heads=heads, dim_head=dim_head, ff_mult=ff_mult, dropout=dropout) for _ in range(depth)]
|
||||||
|
)
|
||||||
|
self.long_skip_connection = nn.Linear(dim * 2, dim, bias=False) if long_skip_connection else None
|
||||||
|
|
||||||
|
self.norm_out = AdaLayerNormZero_Final(dim) # final modulation
|
||||||
|
self.proj_out = nn.Linear(dim, mel_dim)
|
||||||
|
self.out_channels = out_channels
|
||||||
|
self.static_chunk_size = static_chunk_size
|
||||||
|
self.num_decoding_left_chunks = num_decoding_left_chunks
|
||||||
|
|
||||||
|
def forward(self, x, mask, mu, t, spks=None, cond=None, streaming=False):
|
||||||
|
x = x.transpose(1, 2)
|
||||||
|
mu = mu.transpose(1, 2)
|
||||||
|
cond = cond.transpose(1, 2)
|
||||||
|
spks = spks.unsqueeze(dim=1)
|
||||||
|
batch, seq_len = x.shape[0], x.shape[1]
|
||||||
|
if t.ndim == 0:
|
||||||
|
t = t.repeat(batch)
|
||||||
|
|
||||||
|
# t: conditioning time, c: context (text + masked cond audio), x: noised input audio
|
||||||
|
t = self.time_embed(t)
|
||||||
|
x = self.input_embed(x, cond, mu, spks.squeeze(1))
|
||||||
|
|
||||||
|
rope = self.rotary_embed.forward_from_seq_len(seq_len)
|
||||||
|
|
||||||
|
if self.long_skip_connection is not None:
|
||||||
|
residual = x
|
||||||
|
|
||||||
|
if streaming is True:
|
||||||
|
attn_mask = add_optional_chunk_mask(x, mask.bool(), False, False, 0, self.static_chunk_size, -1).unsqueeze(dim=1)
|
||||||
|
else:
|
||||||
|
attn_mask = add_optional_chunk_mask(x, mask.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1).unsqueeze(dim=1)
|
||||||
|
|
||||||
|
for block in self.transformer_blocks:
|
||||||
|
x = block(x, t, mask=attn_mask.bool(), rope=rope)
|
||||||
|
|
||||||
|
if self.long_skip_connection is not None:
|
||||||
|
x = self.long_skip_connection(torch.cat((x, residual), dim=-1))
|
||||||
|
|
||||||
|
x = self.norm_out(x, t)
|
||||||
|
output = self.proj_out(x).transpose(1, 2)
|
||||||
|
return output
|
||||||
616
cosyvoice/flow/DiT/modules.py
Normal file
616
cosyvoice/flow/DiT/modules.py
Normal file
@@ -0,0 +1,616 @@
|
|||||||
|
|
||||||
|
"""
|
||||||
|
ein notation:
|
||||||
|
b - batch
|
||||||
|
n - sequence
|
||||||
|
nt - text sequence
|
||||||
|
nw - raw wave length
|
||||||
|
d - dimension
|
||||||
|
"""
|
||||||
|
|
||||||
|
from __future__ import annotations
|
||||||
|
from typing import Optional
|
||||||
|
import math
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
import torchaudio
|
||||||
|
|
||||||
|
from x_transformers.x_transformers import apply_rotary_pos_emb
|
||||||
|
|
||||||
|
|
||||||
|
# raw wav to mel spec
|
||||||
|
class MelSpec(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
filter_length=1024,
|
||||||
|
hop_length=256,
|
||||||
|
win_length=1024,
|
||||||
|
n_mel_channels=100,
|
||||||
|
target_sample_rate=24_000,
|
||||||
|
normalize=False,
|
||||||
|
power=1,
|
||||||
|
norm=None,
|
||||||
|
center=True,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.n_mel_channels = n_mel_channels
|
||||||
|
|
||||||
|
self.mel_stft = torchaudio.transforms.MelSpectrogram(
|
||||||
|
sample_rate=target_sample_rate,
|
||||||
|
n_fft=filter_length,
|
||||||
|
win_length=win_length,
|
||||||
|
hop_length=hop_length,
|
||||||
|
n_mels=n_mel_channels,
|
||||||
|
power=power,
|
||||||
|
center=center,
|
||||||
|
normalized=normalize,
|
||||||
|
norm=norm,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.register_buffer("dummy", torch.tensor(0), persistent=False)
|
||||||
|
|
||||||
|
def forward(self, inp):
|
||||||
|
if len(inp.shape) == 3:
|
||||||
|
inp = inp.squeeze(1) # 'b 1 nw -> b nw'
|
||||||
|
|
||||||
|
assert len(inp.shape) == 2
|
||||||
|
|
||||||
|
if self.dummy.device != inp.device:
|
||||||
|
self.to(inp.device)
|
||||||
|
|
||||||
|
mel = self.mel_stft(inp)
|
||||||
|
mel = mel.clamp(min=1e-5).log()
|
||||||
|
return mel
|
||||||
|
|
||||||
|
|
||||||
|
# sinusoidal position embedding
|
||||||
|
|
||||||
|
|
||||||
|
class SinusPositionEmbedding(nn.Module):
|
||||||
|
def __init__(self, dim):
|
||||||
|
super().__init__()
|
||||||
|
self.dim = dim
|
||||||
|
|
||||||
|
def forward(self, x, scale=1000):
|
||||||
|
device = x.device
|
||||||
|
half_dim = self.dim // 2
|
||||||
|
emb = math.log(10000) / (half_dim - 1)
|
||||||
|
emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
|
||||||
|
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
|
||||||
|
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
|
||||||
|
return emb
|
||||||
|
|
||||||
|
|
||||||
|
# convolutional position embedding
|
||||||
|
|
||||||
|
|
||||||
|
class ConvPositionEmbedding(nn.Module):
|
||||||
|
def __init__(self, dim, kernel_size=31, groups=16):
|
||||||
|
super().__init__()
|
||||||
|
assert kernel_size % 2 != 0
|
||||||
|
self.conv1d = nn.Sequential(
|
||||||
|
nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2),
|
||||||
|
nn.Mish(),
|
||||||
|
nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2),
|
||||||
|
nn.Mish(),
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x: float["b n d"], mask: bool["b n"] | None = None): # noqa: F722
|
||||||
|
if mask is not None:
|
||||||
|
mask = mask[..., None]
|
||||||
|
x = x.masked_fill(~mask, 0.0)
|
||||||
|
|
||||||
|
x = x.permute(0, 2, 1)
|
||||||
|
x = self.conv1d(x)
|
||||||
|
out = x.permute(0, 2, 1)
|
||||||
|
|
||||||
|
if mask is not None:
|
||||||
|
out = out.masked_fill(~mask, 0.0)
|
||||||
|
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class CausalConvPositionEmbedding(nn.Module):
|
||||||
|
def __init__(self, dim, kernel_size=31, groups=16):
|
||||||
|
super().__init__()
|
||||||
|
assert kernel_size % 2 != 0
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.conv1 = nn.Sequential(
|
||||||
|
nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=0),
|
||||||
|
nn.Mish(),
|
||||||
|
)
|
||||||
|
self.conv2 = nn.Sequential(
|
||||||
|
nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=0),
|
||||||
|
nn.Mish(),
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x: float["b n d"], mask: bool["b n"] | None = None): # noqa: F722
|
||||||
|
if mask is not None:
|
||||||
|
mask = mask[..., None]
|
||||||
|
x = x.masked_fill(~mask, 0.0)
|
||||||
|
|
||||||
|
x = x.permute(0, 2, 1)
|
||||||
|
x = F.pad(x, (self.kernel_size - 1, 0, 0, 0))
|
||||||
|
x = self.conv1(x)
|
||||||
|
x = F.pad(x, (self.kernel_size - 1, 0, 0, 0))
|
||||||
|
x = self.conv2(x)
|
||||||
|
out = x.permute(0, 2, 1)
|
||||||
|
|
||||||
|
if mask is not None:
|
||||||
|
out = out.masked_fill(~mask, 0.0)
|
||||||
|
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
# rotary positional embedding related
|
||||||
|
|
||||||
|
|
||||||
|
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, theta_rescale_factor=1.0):
|
||||||
|
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
|
||||||
|
# has some connection to NTK literature
|
||||||
|
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
|
||||||
|
# https://github.com/lucidrains/rotary-embedding-torch/blob/main/rotary_embedding_torch/rotary_embedding_torch.py
|
||||||
|
theta *= theta_rescale_factor ** (dim / (dim - 2))
|
||||||
|
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
||||||
|
t = torch.arange(end, device=freqs.device) # type: ignore
|
||||||
|
freqs = torch.outer(t, freqs).float() # type: ignore
|
||||||
|
freqs_cos = torch.cos(freqs) # real part
|
||||||
|
freqs_sin = torch.sin(freqs) # imaginary part
|
||||||
|
return torch.cat([freqs_cos, freqs_sin], dim=-1)
|
||||||
|
|
||||||
|
|
||||||
|
def get_pos_embed_indices(start, length, max_pos, scale=1.0):
|
||||||
|
# length = length if isinstance(length, int) else length.max()
|
||||||
|
scale = scale * torch.ones_like(start, dtype=torch.float32) # in case scale is a scalar
|
||||||
|
pos = (
|
||||||
|
start.unsqueeze(1)
|
||||||
|
+ (torch.arange(length, device=start.device, dtype=torch.float32).unsqueeze(0) * scale.unsqueeze(1)).long()
|
||||||
|
)
|
||||||
|
# avoid extra long error.
|
||||||
|
pos = torch.where(pos < max_pos, pos, max_pos - 1)
|
||||||
|
return pos
|
||||||
|
|
||||||
|
|
||||||
|
# Global Response Normalization layer (Instance Normalization ?)
|
||||||
|
|
||||||
|
|
||||||
|
class GRN(nn.Module):
|
||||||
|
def __init__(self, dim):
|
||||||
|
super().__init__()
|
||||||
|
self.gamma = nn.Parameter(torch.zeros(1, 1, dim))
|
||||||
|
self.beta = nn.Parameter(torch.zeros(1, 1, dim))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
Gx = torch.norm(x, p=2, dim=1, keepdim=True)
|
||||||
|
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
|
||||||
|
return self.gamma * (x * Nx) + self.beta + x
|
||||||
|
|
||||||
|
|
||||||
|
# ConvNeXt-V2 Block https://github.com/facebookresearch/ConvNeXt-V2/blob/main/models/convnextv2.py
|
||||||
|
# ref: https://github.com/bfs18/e2_tts/blob/main/rfwave/modules.py#L108
|
||||||
|
|
||||||
|
|
||||||
|
class ConvNeXtV2Block(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
dim: int,
|
||||||
|
intermediate_dim: int,
|
||||||
|
dilation: int = 1,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
padding = (dilation * (7 - 1)) // 2
|
||||||
|
self.dwconv = nn.Conv1d(
|
||||||
|
dim, dim, kernel_size=7, padding=padding, groups=dim, dilation=dilation
|
||||||
|
) # depthwise conv
|
||||||
|
self.norm = nn.LayerNorm(dim, eps=1e-6)
|
||||||
|
self.pwconv1 = nn.Linear(dim, intermediate_dim) # pointwise/1x1 convs, implemented with linear layers
|
||||||
|
self.act = nn.GELU()
|
||||||
|
self.grn = GRN(intermediate_dim)
|
||||||
|
self.pwconv2 = nn.Linear(intermediate_dim, dim)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
residual = x
|
||||||
|
x = x.transpose(1, 2) # b n d -> b d n
|
||||||
|
x = self.dwconv(x)
|
||||||
|
x = x.transpose(1, 2) # b d n -> b n d
|
||||||
|
x = self.norm(x)
|
||||||
|
x = self.pwconv1(x)
|
||||||
|
x = self.act(x)
|
||||||
|
x = self.grn(x)
|
||||||
|
x = self.pwconv2(x)
|
||||||
|
return residual + x
|
||||||
|
|
||||||
|
|
||||||
|
# AdaLayerNormZero
|
||||||
|
# return with modulated x for attn input, and params for later mlp modulation
|
||||||
|
|
||||||
|
|
||||||
|
class AdaLayerNormZero(nn.Module):
|
||||||
|
def __init__(self, dim):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.silu = nn.SiLU()
|
||||||
|
self.linear = nn.Linear(dim, dim * 6)
|
||||||
|
|
||||||
|
self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
||||||
|
|
||||||
|
def forward(self, x, emb=None):
|
||||||
|
emb = self.linear(self.silu(emb))
|
||||||
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = torch.chunk(emb, 6, dim=1)
|
||||||
|
|
||||||
|
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
|
||||||
|
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
||||||
|
|
||||||
|
|
||||||
|
# AdaLayerNormZero for final layer
|
||||||
|
# return only with modulated x for attn input, cuz no more mlp modulation
|
||||||
|
|
||||||
|
|
||||||
|
class AdaLayerNormZero_Final(nn.Module):
|
||||||
|
def __init__(self, dim):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.silu = nn.SiLU()
|
||||||
|
self.linear = nn.Linear(dim, dim * 2)
|
||||||
|
|
||||||
|
self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
||||||
|
|
||||||
|
def forward(self, x, emb):
|
||||||
|
emb = self.linear(self.silu(emb))
|
||||||
|
scale, shift = torch.chunk(emb, 2, dim=1)
|
||||||
|
|
||||||
|
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
# FeedForward
|
||||||
|
|
||||||
|
|
||||||
|
class FeedForward(nn.Module):
|
||||||
|
def __init__(self, dim, dim_out=None, mult=4, dropout=0.0, approximate: str = "none"):
|
||||||
|
super().__init__()
|
||||||
|
inner_dim = int(dim * mult)
|
||||||
|
dim_out = dim_out if dim_out is not None else dim
|
||||||
|
|
||||||
|
activation = nn.GELU(approximate=approximate)
|
||||||
|
project_in = nn.Sequential(nn.Linear(dim, inner_dim), activation)
|
||||||
|
self.ff = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.ff(x)
|
||||||
|
|
||||||
|
|
||||||
|
# Attention with possible joint part
|
||||||
|
# modified from diffusers/src/diffusers/models/attention_processor.py
|
||||||
|
|
||||||
|
|
||||||
|
class Attention(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
processor: JointAttnProcessor | AttnProcessor,
|
||||||
|
dim: int,
|
||||||
|
heads: int = 8,
|
||||||
|
dim_head: int = 64,
|
||||||
|
dropout: float = 0.0,
|
||||||
|
context_dim: Optional[int] = None, # if not None -> joint attention
|
||||||
|
context_pre_only=None,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
if not hasattr(F, "scaled_dot_product_attention"):
|
||||||
|
raise ImportError("Attention equires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
||||||
|
|
||||||
|
self.processor = processor
|
||||||
|
|
||||||
|
self.dim = dim
|
||||||
|
self.heads = heads
|
||||||
|
self.inner_dim = dim_head * heads
|
||||||
|
self.dropout = dropout
|
||||||
|
|
||||||
|
self.context_dim = context_dim
|
||||||
|
self.context_pre_only = context_pre_only
|
||||||
|
|
||||||
|
self.to_q = nn.Linear(dim, self.inner_dim)
|
||||||
|
self.to_k = nn.Linear(dim, self.inner_dim)
|
||||||
|
self.to_v = nn.Linear(dim, self.inner_dim)
|
||||||
|
|
||||||
|
if self.context_dim is not None:
|
||||||
|
self.to_k_c = nn.Linear(context_dim, self.inner_dim)
|
||||||
|
self.to_v_c = nn.Linear(context_dim, self.inner_dim)
|
||||||
|
if self.context_pre_only is not None:
|
||||||
|
self.to_q_c = nn.Linear(context_dim, self.inner_dim)
|
||||||
|
|
||||||
|
self.to_out = nn.ModuleList([])
|
||||||
|
self.to_out.append(nn.Linear(self.inner_dim, dim))
|
||||||
|
self.to_out.append(nn.Dropout(dropout))
|
||||||
|
|
||||||
|
if self.context_pre_only is not None and not self.context_pre_only:
|
||||||
|
self.to_out_c = nn.Linear(self.inner_dim, dim)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
x: float["b n d"], # noised input x # noqa: F722
|
||||||
|
c: float["b n d"] = None, # context c # noqa: F722
|
||||||
|
mask: bool["b n"] | None = None, # noqa: F722
|
||||||
|
rope=None, # rotary position embedding for x
|
||||||
|
c_rope=None, # rotary position embedding for c
|
||||||
|
) -> torch.Tensor:
|
||||||
|
if c is not None:
|
||||||
|
return self.processor(self, x, c=c, mask=mask, rope=rope, c_rope=c_rope)
|
||||||
|
else:
|
||||||
|
return self.processor(self, x, mask=mask, rope=rope)
|
||||||
|
|
||||||
|
|
||||||
|
# Attention processor
|
||||||
|
|
||||||
|
|
||||||
|
class AttnProcessor:
|
||||||
|
def __init__(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def __call__(
|
||||||
|
self,
|
||||||
|
attn: Attention,
|
||||||
|
x: float["b n d"], # noised input x # noqa: F722
|
||||||
|
mask: bool["b n"] | None = None, # noqa: F722
|
||||||
|
rope=None, # rotary position embedding
|
||||||
|
) -> torch.FloatTensor:
|
||||||
|
batch_size = x.shape[0]
|
||||||
|
|
||||||
|
# `sample` projections.
|
||||||
|
query = attn.to_q(x)
|
||||||
|
key = attn.to_k(x)
|
||||||
|
value = attn.to_v(x)
|
||||||
|
|
||||||
|
# apply rotary position embedding
|
||||||
|
if rope is not None:
|
||||||
|
freqs, xpos_scale = rope
|
||||||
|
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
|
||||||
|
|
||||||
|
query = apply_rotary_pos_emb(query, freqs, q_xpos_scale)
|
||||||
|
key = apply_rotary_pos_emb(key, freqs, k_xpos_scale)
|
||||||
|
|
||||||
|
# attention
|
||||||
|
inner_dim = key.shape[-1]
|
||||||
|
head_dim = inner_dim // attn.heads
|
||||||
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||||
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||||
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||||
|
|
||||||
|
# mask. e.g. inference got a batch with different target durations, mask out the padding
|
||||||
|
if mask is not None:
|
||||||
|
attn_mask = mask
|
||||||
|
if attn_mask.dim() == 2:
|
||||||
|
attn_mask = attn_mask.unsqueeze(1).unsqueeze(1) # 'b n -> b 1 1 n'
|
||||||
|
attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2])
|
||||||
|
else:
|
||||||
|
attn_mask = None
|
||||||
|
|
||||||
|
x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False)
|
||||||
|
x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||||
|
x = x.to(query.dtype)
|
||||||
|
|
||||||
|
# linear proj
|
||||||
|
x = attn.to_out[0](x)
|
||||||
|
# dropout
|
||||||
|
x = attn.to_out[1](x)
|
||||||
|
|
||||||
|
if mask is not None:
|
||||||
|
if mask.dim() == 2:
|
||||||
|
mask = mask.unsqueeze(-1)
|
||||||
|
else:
|
||||||
|
mask = mask[:, 0, -1].unsqueeze(-1)
|
||||||
|
x = x.masked_fill(~mask, 0.0)
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
# Joint Attention processor for MM-DiT
|
||||||
|
# modified from diffusers/src/diffusers/models/attention_processor.py
|
||||||
|
|
||||||
|
|
||||||
|
class JointAttnProcessor:
|
||||||
|
def __init__(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def __call__(
|
||||||
|
self,
|
||||||
|
attn: Attention,
|
||||||
|
x: float["b n d"], # noised input x # noqa: F722
|
||||||
|
c: float["b nt d"] = None, # context c, here text # noqa: F722
|
||||||
|
mask: bool["b n"] | None = None, # noqa: F722
|
||||||
|
rope=None, # rotary position embedding for x
|
||||||
|
c_rope=None, # rotary position embedding for c
|
||||||
|
) -> torch.FloatTensor:
|
||||||
|
residual = x
|
||||||
|
|
||||||
|
batch_size = c.shape[0]
|
||||||
|
|
||||||
|
# `sample` projections.
|
||||||
|
query = attn.to_q(x)
|
||||||
|
key = attn.to_k(x)
|
||||||
|
value = attn.to_v(x)
|
||||||
|
|
||||||
|
# `context` projections.
|
||||||
|
c_query = attn.to_q_c(c)
|
||||||
|
c_key = attn.to_k_c(c)
|
||||||
|
c_value = attn.to_v_c(c)
|
||||||
|
|
||||||
|
# apply rope for context and noised input independently
|
||||||
|
if rope is not None:
|
||||||
|
freqs, xpos_scale = rope
|
||||||
|
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
|
||||||
|
query = apply_rotary_pos_emb(query, freqs, q_xpos_scale)
|
||||||
|
key = apply_rotary_pos_emb(key, freqs, k_xpos_scale)
|
||||||
|
if c_rope is not None:
|
||||||
|
freqs, xpos_scale = c_rope
|
||||||
|
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
|
||||||
|
c_query = apply_rotary_pos_emb(c_query, freqs, q_xpos_scale)
|
||||||
|
c_key = apply_rotary_pos_emb(c_key, freqs, k_xpos_scale)
|
||||||
|
|
||||||
|
# attention
|
||||||
|
query = torch.cat([query, c_query], dim=1)
|
||||||
|
key = torch.cat([key, c_key], dim=1)
|
||||||
|
value = torch.cat([value, c_value], dim=1)
|
||||||
|
|
||||||
|
inner_dim = key.shape[-1]
|
||||||
|
head_dim = inner_dim // attn.heads
|
||||||
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||||
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||||
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||||
|
|
||||||
|
# mask. e.g. inference got a batch with different target durations, mask out the padding
|
||||||
|
if mask is not None:
|
||||||
|
attn_mask = F.pad(mask, (0, c.shape[1]), value=True) # no mask for c (text)
|
||||||
|
attn_mask = attn_mask.unsqueeze(1).unsqueeze(1) # 'b n -> b 1 1 n'
|
||||||
|
attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2])
|
||||||
|
else:
|
||||||
|
attn_mask = None
|
||||||
|
|
||||||
|
x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False)
|
||||||
|
x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||||
|
x = x.to(query.dtype)
|
||||||
|
|
||||||
|
# Split the attention outputs.
|
||||||
|
x, c = (
|
||||||
|
x[:, : residual.shape[1]],
|
||||||
|
x[:, residual.shape[1]:],
|
||||||
|
)
|
||||||
|
|
||||||
|
# linear proj
|
||||||
|
x = attn.to_out[0](x)
|
||||||
|
# dropout
|
||||||
|
x = attn.to_out[1](x)
|
||||||
|
if not attn.context_pre_only:
|
||||||
|
c = attn.to_out_c(c)
|
||||||
|
|
||||||
|
if mask is not None:
|
||||||
|
mask = mask.unsqueeze(-1)
|
||||||
|
x = x.masked_fill(~mask, 0.0)
|
||||||
|
# c = c.masked_fill(~mask, 0.) # no mask for c (text)
|
||||||
|
|
||||||
|
return x, c
|
||||||
|
|
||||||
|
|
||||||
|
# DiT Block
|
||||||
|
|
||||||
|
|
||||||
|
class DiTBlock(nn.Module):
|
||||||
|
def __init__(self, dim, heads, dim_head, ff_mult=4, dropout=0.1):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.attn_norm = AdaLayerNormZero(dim)
|
||||||
|
self.attn = Attention(
|
||||||
|
processor=AttnProcessor(),
|
||||||
|
dim=dim,
|
||||||
|
heads=heads,
|
||||||
|
dim_head=dim_head,
|
||||||
|
dropout=dropout,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.ff_norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
||||||
|
self.ff = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
|
||||||
|
|
||||||
|
def forward(self, x, t, mask=None, rope=None): # x: noised input, t: time embedding
|
||||||
|
# pre-norm & modulation for attention input
|
||||||
|
norm, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.attn_norm(x, emb=t)
|
||||||
|
|
||||||
|
# attention
|
||||||
|
attn_output = self.attn(x=norm, mask=mask, rope=rope)
|
||||||
|
|
||||||
|
# process attention output for input x
|
||||||
|
x = x + gate_msa.unsqueeze(1) * attn_output
|
||||||
|
|
||||||
|
ff_norm = self.ff_norm(x) * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
||||||
|
ff_output = self.ff(ff_norm)
|
||||||
|
x = x + gate_mlp.unsqueeze(1) * ff_output
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
# MMDiT Block https://arxiv.org/abs/2403.03206
|
||||||
|
|
||||||
|
|
||||||
|
class MMDiTBlock(nn.Module):
|
||||||
|
r"""
|
||||||
|
modified from diffusers/src/diffusers/models/attention.py
|
||||||
|
|
||||||
|
notes.
|
||||||
|
_c: context related. text, cond, etc. (left part in sd3 fig2.b)
|
||||||
|
_x: noised input related. (right part)
|
||||||
|
context_pre_only: last layer only do prenorm + modulation cuz no more ffn
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, dim, heads, dim_head, ff_mult=4, dropout=0.1, context_pre_only=False):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.context_pre_only = context_pre_only
|
||||||
|
|
||||||
|
self.attn_norm_c = AdaLayerNormZero_Final(dim) if context_pre_only else AdaLayerNormZero(dim)
|
||||||
|
self.attn_norm_x = AdaLayerNormZero(dim)
|
||||||
|
self.attn = Attention(
|
||||||
|
processor=JointAttnProcessor(),
|
||||||
|
dim=dim,
|
||||||
|
heads=heads,
|
||||||
|
dim_head=dim_head,
|
||||||
|
dropout=dropout,
|
||||||
|
context_dim=dim,
|
||||||
|
context_pre_only=context_pre_only,
|
||||||
|
)
|
||||||
|
|
||||||
|
if not context_pre_only:
|
||||||
|
self.ff_norm_c = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
||||||
|
self.ff_c = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
|
||||||
|
else:
|
||||||
|
self.ff_norm_c = None
|
||||||
|
self.ff_c = None
|
||||||
|
self.ff_norm_x = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
||||||
|
self.ff_x = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
|
||||||
|
|
||||||
|
def forward(self, x, c, t, mask=None, rope=None, c_rope=None): # x: noised input, c: context, t: time embedding
|
||||||
|
# pre-norm & modulation for attention input
|
||||||
|
if self.context_pre_only:
|
||||||
|
norm_c = self.attn_norm_c(c, t)
|
||||||
|
else:
|
||||||
|
norm_c, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.attn_norm_c(c, emb=t)
|
||||||
|
norm_x, x_gate_msa, x_shift_mlp, x_scale_mlp, x_gate_mlp = self.attn_norm_x(x, emb=t)
|
||||||
|
|
||||||
|
# attention
|
||||||
|
x_attn_output, c_attn_output = self.attn(x=norm_x, c=norm_c, mask=mask, rope=rope, c_rope=c_rope)
|
||||||
|
|
||||||
|
# process attention output for context c
|
||||||
|
if self.context_pre_only:
|
||||||
|
c = None
|
||||||
|
else: # if not last layer
|
||||||
|
c = c + c_gate_msa.unsqueeze(1) * c_attn_output
|
||||||
|
|
||||||
|
norm_c = self.ff_norm_c(c) * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
||||||
|
c_ff_output = self.ff_c(norm_c)
|
||||||
|
c = c + c_gate_mlp.unsqueeze(1) * c_ff_output
|
||||||
|
|
||||||
|
# process attention output for input x
|
||||||
|
x = x + x_gate_msa.unsqueeze(1) * x_attn_output
|
||||||
|
|
||||||
|
norm_x = self.ff_norm_x(x) * (1 + x_scale_mlp[:, None]) + x_shift_mlp[:, None]
|
||||||
|
x_ff_output = self.ff_x(norm_x)
|
||||||
|
x = x + x_gate_mlp.unsqueeze(1) * x_ff_output
|
||||||
|
|
||||||
|
return c, x
|
||||||
|
|
||||||
|
|
||||||
|
# time step conditioning embedding
|
||||||
|
|
||||||
|
|
||||||
|
class TimestepEmbedding(nn.Module):
|
||||||
|
def __init__(self, dim, freq_embed_dim=256):
|
||||||
|
super().__init__()
|
||||||
|
self.time_embed = SinusPositionEmbedding(freq_embed_dim)
|
||||||
|
self.time_mlp = nn.Sequential(nn.Linear(freq_embed_dim, dim), nn.SiLU(), nn.Linear(dim, dim))
|
||||||
|
|
||||||
|
def forward(self, timestep: float["b"]): # noqa: F821
|
||||||
|
time_hidden = self.time_embed(timestep)
|
||||||
|
time_hidden = time_hidden.to(timestep.dtype)
|
||||||
|
time = self.time_mlp(time_hidden) # b d
|
||||||
|
return time
|
||||||
@@ -37,14 +37,11 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
|||||||
'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
|
'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
|
||||||
'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
|
'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
|
||||||
'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
|
'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
|
||||||
'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
|
'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}}):
|
||||||
mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050,
|
|
||||||
'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
|
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.input_size = input_size
|
self.input_size = input_size
|
||||||
self.output_size = output_size
|
self.output_size = output_size
|
||||||
self.decoder_conf = decoder_conf
|
self.decoder_conf = decoder_conf
|
||||||
self.mel_feat_conf = mel_feat_conf
|
|
||||||
self.vocab_size = vocab_size
|
self.vocab_size = vocab_size
|
||||||
self.output_type = output_type
|
self.output_type = output_type
|
||||||
self.input_frame_rate = input_frame_rate
|
self.input_frame_rate = input_frame_rate
|
||||||
@@ -165,14 +162,11 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
|
|||||||
'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
|
'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
|
||||||
'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
|
'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
|
||||||
'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
|
'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
|
||||||
'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
|
'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}}):
|
||||||
mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050,
|
|
||||||
'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
|
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.input_size = input_size
|
self.input_size = input_size
|
||||||
self.output_size = output_size
|
self.output_size = output_size
|
||||||
self.decoder_conf = decoder_conf
|
self.decoder_conf = decoder_conf
|
||||||
self.mel_feat_conf = mel_feat_conf
|
|
||||||
self.vocab_size = vocab_size
|
self.vocab_size = vocab_size
|
||||||
self.output_type = output_type
|
self.output_type = output_type
|
||||||
self.input_frame_rate = input_frame_rate
|
self.input_frame_rate = input_frame_rate
|
||||||
@@ -279,3 +273,160 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
|
|||||||
feat = feat[:, :, mel_len1:]
|
feat = feat[:, :, mel_len1:]
|
||||||
assert feat.shape[2] == mel_len2
|
assert feat.shape[2] == mel_len2
|
||||||
return feat.float(), None
|
return feat.float(), None
|
||||||
|
|
||||||
|
|
||||||
|
class CausalMaskedDiffWithDiT(torch.nn.Module):
|
||||||
|
def __init__(self,
|
||||||
|
input_size: int = 512,
|
||||||
|
output_size: int = 80,
|
||||||
|
spk_embed_dim: int = 192,
|
||||||
|
output_type: str = "mel",
|
||||||
|
vocab_size: int = 4096,
|
||||||
|
input_frame_rate: int = 50,
|
||||||
|
only_mask_loss: bool = True,
|
||||||
|
token_mel_ratio: int = 2,
|
||||||
|
pre_lookahead_len: int = 3,
|
||||||
|
pre_lookahead_layer: torch.nn.Module = None,
|
||||||
|
decoder: torch.nn.Module = None,
|
||||||
|
decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1,
|
||||||
|
'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
|
||||||
|
'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
|
||||||
|
'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
|
||||||
|
'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}}):
|
||||||
|
super().__init__()
|
||||||
|
self.input_size = input_size
|
||||||
|
self.output_size = output_size
|
||||||
|
self.decoder_conf = decoder_conf
|
||||||
|
self.vocab_size = vocab_size
|
||||||
|
self.output_type = output_type
|
||||||
|
self.input_frame_rate = input_frame_rate
|
||||||
|
logging.info(f"input frame rate={self.input_frame_rate}")
|
||||||
|
self.input_embedding = nn.Embedding(vocab_size, input_size)
|
||||||
|
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
|
||||||
|
self.pre_lookahead_len = pre_lookahead_len
|
||||||
|
self.pre_lookahead_layer = pre_lookahead_layer
|
||||||
|
self.decoder = decoder
|
||||||
|
self.only_mask_loss = only_mask_loss
|
||||||
|
self.token_mel_ratio = token_mel_ratio
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
batch: dict,
|
||||||
|
device: torch.device,
|
||||||
|
) -> Dict[str, Optional[torch.Tensor]]:
|
||||||
|
token = batch['speech_token'].to(device)
|
||||||
|
token_len = batch['speech_token_len'].to(device)
|
||||||
|
feat = batch['speech_feat'].to(device)
|
||||||
|
feat_len = batch['speech_feat_len'].to(device)
|
||||||
|
embedding = batch['embedding'].to(device)
|
||||||
|
|
||||||
|
# NOTE unified training, static_chunk_size > 0 or = 0
|
||||||
|
streaming = True if random.random() < 0.5 else False
|
||||||
|
|
||||||
|
# xvec projection
|
||||||
|
embedding = F.normalize(embedding, dim=1)
|
||||||
|
embedding = self.spk_embed_affine_layer(embedding)
|
||||||
|
|
||||||
|
# concat text and prompt_text
|
||||||
|
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device)
|
||||||
|
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
||||||
|
|
||||||
|
# text encode
|
||||||
|
h = self.pre_lookahead_layer(token)
|
||||||
|
h = h.repeat_interleave(self.token_mel_ratio, dim=1)
|
||||||
|
mask = mask.repeat_interleave(self.token_mel_ratio, dim=1).squeeze(dim=-1)
|
||||||
|
|
||||||
|
# get conditions
|
||||||
|
conds = torch.zeros(feat.shape, device=token.device)
|
||||||
|
for i, j in enumerate(feat_len):
|
||||||
|
if random.random() < 0.5:
|
||||||
|
continue
|
||||||
|
index = random.randint(0, int(0.3 * j))
|
||||||
|
conds[i, :index] = feat[i, :index]
|
||||||
|
conds = conds.transpose(1, 2)
|
||||||
|
|
||||||
|
loss, _ = self.decoder.compute_loss(
|
||||||
|
feat.transpose(1, 2).contiguous(),
|
||||||
|
mask.unsqueeze(1),
|
||||||
|
h.transpose(1, 2).contiguous(),
|
||||||
|
embedding,
|
||||||
|
cond=conds,
|
||||||
|
streaming=streaming,
|
||||||
|
)
|
||||||
|
return {'loss': loss}
|
||||||
|
|
||||||
|
@torch.inference_mode()
|
||||||
|
def inference(self,
|
||||||
|
token,
|
||||||
|
token_len,
|
||||||
|
prompt_token,
|
||||||
|
prompt_token_len,
|
||||||
|
prompt_feat,
|
||||||
|
prompt_feat_len,
|
||||||
|
embedding,
|
||||||
|
streaming,
|
||||||
|
finalize):
|
||||||
|
assert token.shape[0] == 1
|
||||||
|
# xvec projection
|
||||||
|
embedding = F.normalize(embedding, dim=1)
|
||||||
|
embedding = self.spk_embed_affine_layer(embedding)
|
||||||
|
|
||||||
|
# concat text and prompt_text
|
||||||
|
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
||||||
|
mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
|
||||||
|
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
||||||
|
|
||||||
|
# text encode
|
||||||
|
if finalize is True:
|
||||||
|
h = self.pre_lookahead_layer(token)
|
||||||
|
else:
|
||||||
|
h = self.pre_lookahead_layer(token[:, :-self.pre_lookahead_len], context=token[:, -self.pre_lookahead_len:])
|
||||||
|
h = h.repeat_interleave(self.token_mel_ratio, dim=1)
|
||||||
|
mel_len1, mel_len2 = prompt_feat.shape[1], h.shape[1] - prompt_feat.shape[1]
|
||||||
|
|
||||||
|
# get conditions
|
||||||
|
conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device).to(h.dtype)
|
||||||
|
conds[:, :mel_len1] = prompt_feat
|
||||||
|
conds = conds.transpose(1, 2)
|
||||||
|
|
||||||
|
mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
|
||||||
|
feat, _ = self.decoder(
|
||||||
|
mu=h.transpose(1, 2).contiguous(),
|
||||||
|
mask=mask.unsqueeze(1),
|
||||||
|
spks=embedding,
|
||||||
|
cond=conds,
|
||||||
|
n_timesteps=10,
|
||||||
|
streaming=streaming
|
||||||
|
)
|
||||||
|
feat = feat[:, :, mel_len1:]
|
||||||
|
assert feat.shape[2] == mel_len2
|
||||||
|
return feat.float(), None
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
torch.backends.cudnn.deterministic = True
|
||||||
|
torch.backends.cudnn.benchmark = False
|
||||||
|
from hyperpyyaml import load_hyperpyyaml
|
||||||
|
with open('./pretrained_models/Fun-CosyVoice3-0.5B/cosyvoice3.yaml', 'r') as f:
|
||||||
|
configs = load_hyperpyyaml(f, overrides={'llm': None, 'hift': None})
|
||||||
|
model = configs['flow']
|
||||||
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
max_len = 10 * model.decoder.estimator.static_chunk_size
|
||||||
|
chunk_size = model.decoder.estimator.static_chunk_size
|
||||||
|
context_size = model.pre_lookahead_layer.pre_lookahead_len
|
||||||
|
token = torch.randint(0, 6561, size=(1, max_len)).to(device)
|
||||||
|
token_len = torch.tensor([max_len]).to(device)
|
||||||
|
prompt_token = torch.randint(0, 6561, size=(1, chunk_size)).to(device)
|
||||||
|
prompt_token_len = torch.tensor([chunk_size]).to(device)
|
||||||
|
prompt_feat = torch.rand(1, chunk_size * 2, 80).to(device)
|
||||||
|
prompt_feat_len = torch.tensor([chunk_size * 2]).to(device)
|
||||||
|
prompt_embedding = torch.rand(1, 192).to(device)
|
||||||
|
pred_gt, _ = model.inference(token, token_len, prompt_token, prompt_token_len, prompt_feat, prompt_feat_len, prompt_embedding, streaming=True, finalize=True)
|
||||||
|
for i in range(0, max_len, chunk_size):
|
||||||
|
finalize = True if i + chunk_size + context_size >= max_len else False
|
||||||
|
pred_chunk, _ = model.inference(token[:, :i + chunk_size + context_size], torch.tensor([token[:, :i + chunk_size + context_size].shape[1]]).to(device),
|
||||||
|
prompt_token, prompt_token_len, prompt_feat, prompt_feat_len, prompt_embedding, streaming=True, finalize=finalize)
|
||||||
|
pred_chunk = pred_chunk[:, :, i * model.token_mel_ratio:]
|
||||||
|
print((pred_gt[:, :, i * model.token_mel_ratio: i * model.token_mel_ratio + pred_chunk.shape[2]] - pred_chunk).abs().max().item())
|
||||||
|
|||||||
@@ -91,12 +91,13 @@ class ConditionalCFM(BASECFM):
|
|||||||
sol = []
|
sol = []
|
||||||
|
|
||||||
# Do not use concat, it may cause memory format changed and trt infer with wrong results!
|
# Do not use concat, it may cause memory format changed and trt infer with wrong results!
|
||||||
x_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
# NOTE when flow run in amp mode, x.dtype is float32, which cause nan in trt fp16 inference, so set dtype=spks.dtype
|
||||||
mask_in = torch.zeros([2, 1, x.size(2)], device=x.device, dtype=x.dtype)
|
x_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=spks.dtype)
|
||||||
mu_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
mask_in = torch.zeros([2, 1, x.size(2)], device=x.device, dtype=spks.dtype)
|
||||||
t_in = torch.zeros([2], device=x.device, dtype=x.dtype)
|
mu_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=spks.dtype)
|
||||||
spks_in = torch.zeros([2, 80], device=x.device, dtype=x.dtype)
|
t_in = torch.zeros([2], device=x.device, dtype=spks.dtype)
|
||||||
cond_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
spks_in = torch.zeros([2, 80], device=x.device, dtype=spks.dtype)
|
||||||
|
cond_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=spks.dtype)
|
||||||
for step in range(1, len(t_span)):
|
for step in range(1, len(t_span)):
|
||||||
# Classifier-Free Guidance inference introduced in VoiceBox
|
# Classifier-Free Guidance inference introduced in VoiceBox
|
||||||
x_in[:] = x
|
x_in[:] = x
|
||||||
|
|||||||
@@ -17,6 +17,7 @@ try:
|
|||||||
from torch.nn.utils.parametrizations import weight_norm
|
from torch.nn.utils.parametrizations import weight_norm
|
||||||
except ImportError:
|
except ImportError:
|
||||||
from torch.nn.utils import weight_norm
|
from torch.nn.utils import weight_norm
|
||||||
|
from cosyvoice.transformer.convolution import CausalConv1d
|
||||||
|
|
||||||
|
|
||||||
class ConvRNNF0Predictor(nn.Module):
|
class ConvRNNF0Predictor(nn.Module):
|
||||||
@@ -56,3 +57,47 @@ class ConvRNNF0Predictor(nn.Module):
|
|||||||
x = self.condnet(x)
|
x = self.condnet(x)
|
||||||
x = x.transpose(1, 2)
|
x = x.transpose(1, 2)
|
||||||
return torch.abs(self.classifier(x).squeeze(-1))
|
return torch.abs(self.classifier(x).squeeze(-1))
|
||||||
|
|
||||||
|
|
||||||
|
class CausalConvRNNF0Predictor(nn.Module):
|
||||||
|
def __init__(self,
|
||||||
|
num_class: int = 1,
|
||||||
|
in_channels: int = 80,
|
||||||
|
cond_channels: int = 512
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.num_class = num_class
|
||||||
|
self.condnet = nn.Sequential(
|
||||||
|
weight_norm(
|
||||||
|
CausalConv1d(in_channels, cond_channels, kernel_size=4, causal_type='right')
|
||||||
|
),
|
||||||
|
nn.ELU(),
|
||||||
|
weight_norm(
|
||||||
|
CausalConv1d(cond_channels, cond_channels, kernel_size=3, causal_type='left')
|
||||||
|
),
|
||||||
|
nn.ELU(),
|
||||||
|
weight_norm(
|
||||||
|
CausalConv1d(cond_channels, cond_channels, kernel_size=3, causal_type='left')
|
||||||
|
),
|
||||||
|
nn.ELU(),
|
||||||
|
weight_norm(
|
||||||
|
CausalConv1d(cond_channels, cond_channels, kernel_size=3, causal_type='left')
|
||||||
|
),
|
||||||
|
nn.ELU(),
|
||||||
|
weight_norm(
|
||||||
|
CausalConv1d(cond_channels, cond_channels, kernel_size=3, causal_type='left')
|
||||||
|
),
|
||||||
|
nn.ELU(),
|
||||||
|
)
|
||||||
|
self.classifier = nn.Linear(in_features=cond_channels, out_features=self.num_class)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor, finalize: bool = True) -> torch.Tensor:
|
||||||
|
if finalize is True:
|
||||||
|
x = self.condnet[0](x)
|
||||||
|
else:
|
||||||
|
x = self.condnet[0](x[:, :, :-self.condnet[0].causal_padding], x[:, :, -self.condnet[0].causal_padding:])
|
||||||
|
for i in range(1, len(self.condnet)):
|
||||||
|
x = self.condnet[i](x)
|
||||||
|
x = x.transpose(1, 2)
|
||||||
|
return torch.abs(self.classifier(x).squeeze(-1))
|
||||||
|
|||||||
@@ -28,7 +28,7 @@ try:
|
|||||||
except ImportError:
|
except ImportError:
|
||||||
from torch.nn.utils import weight_norm
|
from torch.nn.utils import weight_norm
|
||||||
from torch.distributions.uniform import Uniform
|
from torch.distributions.uniform import Uniform
|
||||||
|
from cosyvoice.transformer.convolution import CausalConv1d, CausalConv1dDownSample, CausalConv1dUpsample
|
||||||
from cosyvoice.transformer.activation import Snake
|
from cosyvoice.transformer.activation import Snake
|
||||||
from cosyvoice.utils.common import get_padding
|
from cosyvoice.utils.common import get_padding
|
||||||
from cosyvoice.utils.common import init_weights
|
from cosyvoice.utils.common import init_weights
|
||||||
@@ -50,8 +50,10 @@ class ResBlock(torch.nn.Module):
|
|||||||
channels: int = 512,
|
channels: int = 512,
|
||||||
kernel_size: int = 3,
|
kernel_size: int = 3,
|
||||||
dilations: List[int] = [1, 3, 5],
|
dilations: List[int] = [1, 3, 5],
|
||||||
|
causal: bool = False,
|
||||||
):
|
):
|
||||||
super(ResBlock, self).__init__()
|
super(ResBlock, self).__init__()
|
||||||
|
self.causal = causal
|
||||||
self.convs1 = nn.ModuleList()
|
self.convs1 = nn.ModuleList()
|
||||||
self.convs2 = nn.ModuleList()
|
self.convs2 = nn.ModuleList()
|
||||||
|
|
||||||
@@ -64,7 +66,14 @@ class ResBlock(torch.nn.Module):
|
|||||||
kernel_size,
|
kernel_size,
|
||||||
1,
|
1,
|
||||||
dilation=dilation,
|
dilation=dilation,
|
||||||
padding=get_padding(kernel_size, dilation)
|
padding=get_padding(kernel_size, dilation)) if causal is False else
|
||||||
|
CausalConv1d(
|
||||||
|
channels,
|
||||||
|
channels,
|
||||||
|
kernel_size,
|
||||||
|
1,
|
||||||
|
dilation=dilation,
|
||||||
|
causal_type='left'
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
@@ -76,7 +85,14 @@ class ResBlock(torch.nn.Module):
|
|||||||
kernel_size,
|
kernel_size,
|
||||||
1,
|
1,
|
||||||
dilation=1,
|
dilation=1,
|
||||||
padding=get_padding(kernel_size, 1)
|
padding=get_padding(kernel_size, 1)) if causal is False else
|
||||||
|
CausalConv1d(
|
||||||
|
channels,
|
||||||
|
channels,
|
||||||
|
kernel_size,
|
||||||
|
1,
|
||||||
|
dilation=1,
|
||||||
|
causal_type='left'
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
@@ -139,11 +155,13 @@ class SineGen(torch.nn.Module):
|
|||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def forward(self, f0):
|
def forward(self, f0):
|
||||||
|
""" sine_tensor, uv = forward(f0)
|
||||||
|
input F0: tensor(batchsize=1, dim=1, length)
|
||||||
|
f0 for unvoiced steps should be 0
|
||||||
|
output sine_tensor: tensor(batchsize=1, length, dim)
|
||||||
|
output uv: tensor(batchsize=1, length, 1)
|
||||||
"""
|
"""
|
||||||
:param f0: [B, 1, sample_len], Hz
|
f0 = f0.transpose(1, 2)
|
||||||
:return: [B, 1, sample_len]
|
|
||||||
"""
|
|
||||||
|
|
||||||
F_mat = torch.zeros((f0.size(0), self.harmonic_num + 1, f0.size(-1))).to(f0.device)
|
F_mat = torch.zeros((f0.size(0), self.harmonic_num + 1, f0.size(-1))).to(f0.device)
|
||||||
for i in range(self.harmonic_num + 1):
|
for i in range(self.harmonic_num + 1):
|
||||||
F_mat[:, i: i + 1, :] = f0 * (i + 1) / self.sampling_rate
|
F_mat[:, i: i + 1, :] = f0 * (i + 1) / self.sampling_rate
|
||||||
@@ -168,59 +186,7 @@ class SineGen(torch.nn.Module):
|
|||||||
# first: set the unvoiced part to 0 by uv
|
# first: set the unvoiced part to 0 by uv
|
||||||
# then: additive noise
|
# then: additive noise
|
||||||
sine_waves = sine_waves * uv + noise
|
sine_waves = sine_waves * uv + noise
|
||||||
return sine_waves, uv, noise
|
return sine_waves.transpose(1, 2), uv.transpose(1, 2), noise
|
||||||
|
|
||||||
|
|
||||||
class SourceModuleHnNSF(torch.nn.Module):
|
|
||||||
""" SourceModule for hn-nsf
|
|
||||||
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
|
||||||
add_noise_std=0.003, voiced_threshod=0)
|
|
||||||
sampling_rate: sampling_rate in Hz
|
|
||||||
harmonic_num: number of harmonic above F0 (default: 0)
|
|
||||||
sine_amp: amplitude of sine source signal (default: 0.1)
|
|
||||||
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
|
||||||
note that amplitude of noise in unvoiced is decided
|
|
||||||
by sine_amp
|
|
||||||
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
|
||||||
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
|
||||||
F0_sampled (batchsize, length, 1)
|
|
||||||
Sine_source (batchsize, length, 1)
|
|
||||||
noise_source (batchsize, length 1)
|
|
||||||
uv (batchsize, length, 1)
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
|
|
||||||
add_noise_std=0.003, voiced_threshod=0):
|
|
||||||
super(SourceModuleHnNSF, self).__init__()
|
|
||||||
|
|
||||||
self.sine_amp = sine_amp
|
|
||||||
self.noise_std = add_noise_std
|
|
||||||
|
|
||||||
# to produce sine waveforms
|
|
||||||
self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
|
|
||||||
sine_amp, add_noise_std, voiced_threshod)
|
|
||||||
|
|
||||||
# to merge source harmonics into a single excitation
|
|
||||||
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
|
||||||
self.l_tanh = torch.nn.Tanh()
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
"""
|
|
||||||
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
|
||||||
F0_sampled (batchsize, length, 1)
|
|
||||||
Sine_source (batchsize, length, 1)
|
|
||||||
noise_source (batchsize, length 1)
|
|
||||||
"""
|
|
||||||
# source for harmonic branch
|
|
||||||
with torch.no_grad():
|
|
||||||
sine_wavs, uv, _ = self.l_sin_gen(x.transpose(1, 2))
|
|
||||||
sine_wavs = sine_wavs.transpose(1, 2)
|
|
||||||
uv = uv.transpose(1, 2)
|
|
||||||
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
|
||||||
|
|
||||||
# source for noise branch, in the same shape as uv
|
|
||||||
noise = torch.randn_like(uv) * self.sine_amp / 3
|
|
||||||
return sine_merge, noise, uv
|
|
||||||
|
|
||||||
|
|
||||||
class SineGen2(torch.nn.Module):
|
class SineGen2(torch.nn.Module):
|
||||||
@@ -242,7 +208,8 @@ class SineGen2(torch.nn.Module):
|
|||||||
def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
|
def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
|
||||||
sine_amp=0.1, noise_std=0.003,
|
sine_amp=0.1, noise_std=0.003,
|
||||||
voiced_threshold=0,
|
voiced_threshold=0,
|
||||||
flag_for_pulse=False):
|
flag_for_pulse=False,
|
||||||
|
causal=False):
|
||||||
super(SineGen2, self).__init__()
|
super(SineGen2, self).__init__()
|
||||||
self.sine_amp = sine_amp
|
self.sine_amp = sine_amp
|
||||||
self.noise_std = noise_std
|
self.noise_std = noise_std
|
||||||
@@ -252,6 +219,11 @@ class SineGen2(torch.nn.Module):
|
|||||||
self.voiced_threshold = voiced_threshold
|
self.voiced_threshold = voiced_threshold
|
||||||
self.flag_for_pulse = flag_for_pulse
|
self.flag_for_pulse = flag_for_pulse
|
||||||
self.upsample_scale = upsample_scale
|
self.upsample_scale = upsample_scale
|
||||||
|
self.causal = causal
|
||||||
|
if causal is True:
|
||||||
|
self.rand_ini = torch.rand(1, 9)
|
||||||
|
self.rand_ini[:, 0] = 0
|
||||||
|
self.sine_waves = torch.rand(1, 300 * 24000, 9)
|
||||||
|
|
||||||
def _f02uv(self, f0):
|
def _f02uv(self, f0):
|
||||||
# generate uv signal
|
# generate uv signal
|
||||||
@@ -267,6 +239,9 @@ class SineGen2(torch.nn.Module):
|
|||||||
rad_values = (f0_values / self.sampling_rate) % 1
|
rad_values = (f0_values / self.sampling_rate) % 1
|
||||||
|
|
||||||
# initial phase noise (no noise for fundamental component)
|
# initial phase noise (no noise for fundamental component)
|
||||||
|
if self.training is False and self.causal is True:
|
||||||
|
rad_values[:, 0, :] = rad_values[:, 0, :] + self.rand_ini.to(rad_values.device)
|
||||||
|
else:
|
||||||
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], device=f0_values.device)
|
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], device=f0_values.device)
|
||||||
rand_ini[:, 0] = 0
|
rand_ini[:, 0] = 0
|
||||||
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
||||||
@@ -279,7 +254,7 @@ class SineGen2(torch.nn.Module):
|
|||||||
|
|
||||||
phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
|
phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
|
||||||
phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
|
phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
|
||||||
scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
|
scale_factor=self.upsample_scale, mode="nearest" if self.causal is True else 'linear').transpose(1, 2)
|
||||||
sines = torch.sin(phase)
|
sines = torch.sin(phase)
|
||||||
else:
|
else:
|
||||||
# If necessary, make sure that the first time step of every
|
# If necessary, make sure that the first time step of every
|
||||||
@@ -331,6 +306,9 @@ class SineGen2(torch.nn.Module):
|
|||||||
# std = self.sine_amp/3 -> max value ~ self.sine_amp
|
# std = self.sine_amp/3 -> max value ~ self.sine_amp
|
||||||
# . for voiced regions is self.noise_std
|
# . for voiced regions is self.noise_std
|
||||||
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
||||||
|
if self.training is False and self.causal is True:
|
||||||
|
noise = noise_amp * self.sine_waves[:, :sine_waves.shape[1]].to(sine_waves.device)
|
||||||
|
else:
|
||||||
noise = noise_amp * torch.randn_like(sine_waves)
|
noise = noise_amp * torch.randn_like(sine_waves)
|
||||||
|
|
||||||
# first: set the unvoiced part to 0 by uv
|
# first: set the unvoiced part to 0 by uv
|
||||||
@@ -339,7 +317,7 @@ class SineGen2(torch.nn.Module):
|
|||||||
return sine_waves, uv, noise
|
return sine_waves, uv, noise
|
||||||
|
|
||||||
|
|
||||||
class SourceModuleHnNSF2(torch.nn.Module):
|
class SourceModuleHnNSF(torch.nn.Module):
|
||||||
""" SourceModule for hn-nsf
|
""" SourceModule for hn-nsf
|
||||||
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
||||||
add_noise_std=0.003, voiced_threshod=0)
|
add_noise_std=0.003, voiced_threshod=0)
|
||||||
@@ -358,19 +336,24 @@ class SourceModuleHnNSF2(torch.nn.Module):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
|
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
|
||||||
add_noise_std=0.003, voiced_threshod=0):
|
add_noise_std=0.003, voiced_threshod=0, sinegen_type='1', causal=False):
|
||||||
super(SourceModuleHnNSF2, self).__init__()
|
super(SourceModuleHnNSF, self).__init__()
|
||||||
|
|
||||||
self.sine_amp = sine_amp
|
self.sine_amp = sine_amp
|
||||||
self.noise_std = add_noise_std
|
self.noise_std = add_noise_std
|
||||||
|
|
||||||
# to produce sine waveforms
|
# to produce sine waveforms
|
||||||
self.l_sin_gen = SineGen2(sampling_rate, upsample_scale, harmonic_num,
|
if sinegen_type == '1':
|
||||||
sine_amp, add_noise_std, voiced_threshod)
|
self.l_sin_gen = SineGen(sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod)
|
||||||
|
else:
|
||||||
|
self.l_sin_gen = SineGen2(sampling_rate, upsample_scale, harmonic_num, sine_amp, add_noise_std, voiced_threshod, causal=causal)
|
||||||
|
|
||||||
# to merge source harmonics into a single excitation
|
# to merge source harmonics into a single excitation
|
||||||
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
||||||
self.l_tanh = torch.nn.Tanh()
|
self.l_tanh = torch.nn.Tanh()
|
||||||
|
self.causal = causal
|
||||||
|
if causal is True:
|
||||||
|
self.uv = torch.rand(1, 300 * 24000, 1)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
"""
|
"""
|
||||||
@@ -385,6 +368,9 @@ class SourceModuleHnNSF2(torch.nn.Module):
|
|||||||
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
||||||
|
|
||||||
# source for noise branch, in the same shape as uv
|
# source for noise branch, in the same shape as uv
|
||||||
|
if self.training is False and self.causal is True:
|
||||||
|
noise = self.uv[:, :uv.shape[1]] * self.sine_amp / 3
|
||||||
|
else:
|
||||||
noise = torch.randn_like(uv) * self.sine_amp / 3
|
noise = torch.randn_like(uv) * self.sine_amp / 3
|
||||||
return sine_merge, noise, uv
|
return sine_merge, noise, uv
|
||||||
|
|
||||||
@@ -425,15 +411,16 @@ class HiFTGenerator(nn.Module):
|
|||||||
|
|
||||||
self.num_kernels = len(resblock_kernel_sizes)
|
self.num_kernels = len(resblock_kernel_sizes)
|
||||||
self.num_upsamples = len(upsample_rates)
|
self.num_upsamples = len(upsample_rates)
|
||||||
# NOTE in CosyVoice2, we use the original SourceModuleHnNSF implementation
|
# NOTE in CosyVoice2, we use the original SineGen implementation
|
||||||
this_SourceModuleHnNSF = SourceModuleHnNSF if self.sampling_rate == 22050 else SourceModuleHnNSF2
|
self.m_source = SourceModuleHnNSF(
|
||||||
self.m_source = this_SourceModuleHnNSF(
|
|
||||||
sampling_rate=sampling_rate,
|
sampling_rate=sampling_rate,
|
||||||
upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
|
upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
|
||||||
harmonic_num=nb_harmonics,
|
harmonic_num=nb_harmonics,
|
||||||
sine_amp=nsf_alpha,
|
sine_amp=nsf_alpha,
|
||||||
add_noise_std=nsf_sigma,
|
add_noise_std=nsf_sigma,
|
||||||
voiced_threshod=nsf_voiced_threshold)
|
voiced_threshod=nsf_voiced_threshold,
|
||||||
|
sinegen_type='1' if self.sampling_rate == 22050 else '2',
|
||||||
|
causal=False)
|
||||||
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"])
|
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"])
|
||||||
|
|
||||||
self.conv_pre = weight_norm(
|
self.conv_pre = weight_norm(
|
||||||
@@ -580,3 +567,180 @@ class HiFTGenerator(nn.Module):
|
|||||||
s[:, :, :cache_source.shape[2]] = cache_source
|
s[:, :, :cache_source.shape[2]] = cache_source
|
||||||
generated_speech = self.decode(x=speech_feat, s=s)
|
generated_speech = self.decode(x=speech_feat, s=s)
|
||||||
return generated_speech, s
|
return generated_speech, s
|
||||||
|
|
||||||
|
|
||||||
|
class CausalHiFTGenerator(HiFTGenerator):
|
||||||
|
"""
|
||||||
|
HiFTNet Generator: Neural Source Filter + ISTFTNet
|
||||||
|
https://arxiv.org/abs/2309.09493
|
||||||
|
"""
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
in_channels: int = 80,
|
||||||
|
base_channels: int = 512,
|
||||||
|
nb_harmonics: int = 8,
|
||||||
|
sampling_rate: int = 22050,
|
||||||
|
nsf_alpha: float = 0.1,
|
||||||
|
nsf_sigma: float = 0.003,
|
||||||
|
nsf_voiced_threshold: float = 10,
|
||||||
|
upsample_rates: List[int] = [8, 8],
|
||||||
|
upsample_kernel_sizes: List[int] = [16, 16],
|
||||||
|
istft_params: Dict[str, int] = {"n_fft": 16, "hop_len": 4},
|
||||||
|
resblock_kernel_sizes: List[int] = [3, 7, 11],
|
||||||
|
resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
||||||
|
source_resblock_kernel_sizes: List[int] = [7, 11],
|
||||||
|
source_resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5]],
|
||||||
|
lrelu_slope: float = 0.1,
|
||||||
|
audio_limit: float = 0.99,
|
||||||
|
conv_pre_look_right: int = 4,
|
||||||
|
f0_predictor: torch.nn.Module = None,
|
||||||
|
):
|
||||||
|
torch.nn.Module.__init__(self)
|
||||||
|
|
||||||
|
self.out_channels = 1
|
||||||
|
self.nb_harmonics = nb_harmonics
|
||||||
|
self.sampling_rate = sampling_rate
|
||||||
|
self.istft_params = istft_params
|
||||||
|
self.lrelu_slope = lrelu_slope
|
||||||
|
self.audio_limit = audio_limit
|
||||||
|
|
||||||
|
self.num_kernels = len(resblock_kernel_sizes)
|
||||||
|
self.num_upsamples = len(upsample_rates)
|
||||||
|
self.m_source = SourceModuleHnNSF(
|
||||||
|
sampling_rate=sampling_rate,
|
||||||
|
upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
|
||||||
|
harmonic_num=nb_harmonics,
|
||||||
|
sine_amp=nsf_alpha,
|
||||||
|
add_noise_std=nsf_sigma,
|
||||||
|
voiced_threshod=nsf_voiced_threshold,
|
||||||
|
sinegen_type='1' if self.sampling_rate == 22050 else '2',
|
||||||
|
causal=True)
|
||||||
|
self.upsample_rates = upsample_rates
|
||||||
|
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"])
|
||||||
|
|
||||||
|
self.conv_pre = weight_norm(
|
||||||
|
CausalConv1d(in_channels, base_channels, conv_pre_look_right + 1, 1, causal_type='right')
|
||||||
|
)
|
||||||
|
|
||||||
|
# Up
|
||||||
|
self.ups = nn.ModuleList()
|
||||||
|
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
||||||
|
self.ups.append(
|
||||||
|
weight_norm(
|
||||||
|
CausalConv1dUpsample(
|
||||||
|
base_channels // (2**i),
|
||||||
|
base_channels // (2**(i + 1)),
|
||||||
|
k,
|
||||||
|
u,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Down
|
||||||
|
self.source_downs = nn.ModuleList()
|
||||||
|
self.source_resblocks = nn.ModuleList()
|
||||||
|
downsample_rates = [1] + upsample_rates[::-1][:-1]
|
||||||
|
downsample_cum_rates = np.cumprod(downsample_rates)
|
||||||
|
for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes, source_resblock_dilation_sizes)):
|
||||||
|
if u == 1:
|
||||||
|
self.source_downs.append(
|
||||||
|
CausalConv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1, causal_type='left')
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
self.source_downs.append(
|
||||||
|
CausalConv1dDownSample(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), u * 2, u)
|
||||||
|
)
|
||||||
|
|
||||||
|
self.source_resblocks.append(
|
||||||
|
ResBlock(base_channels // (2 ** (i + 1)), k, d, causal=True)
|
||||||
|
)
|
||||||
|
|
||||||
|
self.resblocks = nn.ModuleList()
|
||||||
|
for i in range(len(self.ups)):
|
||||||
|
ch = base_channels // (2**(i + 1))
|
||||||
|
for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
||||||
|
self.resblocks.append(ResBlock(ch, k, d, causal=True))
|
||||||
|
|
||||||
|
self.conv_post = weight_norm(CausalConv1d(ch, istft_params["n_fft"] + 2, 7, 1, causal_type='left'))
|
||||||
|
self.ups.apply(init_weights)
|
||||||
|
self.conv_post.apply(init_weights)
|
||||||
|
self.reflection_pad = nn.ReflectionPad1d((1, 0))
|
||||||
|
self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32))
|
||||||
|
self.conv_pre_look_right = conv_pre_look_right
|
||||||
|
self.f0_predictor = f0_predictor
|
||||||
|
|
||||||
|
def decode(self, x: torch.Tensor, s: torch.Tensor = torch.zeros(1, 1, 0), finalize: bool = True) -> torch.Tensor:
|
||||||
|
s_stft_real, s_stft_imag = self._stft(s.squeeze(1))
|
||||||
|
if finalize is True:
|
||||||
|
x = self.conv_pre(x)
|
||||||
|
else:
|
||||||
|
x = self.conv_pre(x[:, :, :-self.conv_pre_look_right], x[:, :, -self.conv_pre_look_right:])
|
||||||
|
s_stft_real = s_stft_real[:, :, :-int(np.prod(self.upsample_rates) * self.conv_pre_look_right)]
|
||||||
|
s_stft_imag = s_stft_imag[:, :, :-int(np.prod(self.upsample_rates) * self.conv_pre_look_right)]
|
||||||
|
s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1)
|
||||||
|
|
||||||
|
for i in range(self.num_upsamples):
|
||||||
|
x = F.leaky_relu(x, self.lrelu_slope)
|
||||||
|
x = self.ups[i](x)
|
||||||
|
|
||||||
|
if i == self.num_upsamples - 1:
|
||||||
|
x = self.reflection_pad(x)
|
||||||
|
|
||||||
|
# fusion
|
||||||
|
si = self.source_downs[i](s_stft)
|
||||||
|
si = self.source_resblocks[i](si)
|
||||||
|
x = x + si
|
||||||
|
|
||||||
|
xs = None
|
||||||
|
for j in range(self.num_kernels):
|
||||||
|
if xs is None:
|
||||||
|
xs = self.resblocks[i * self.num_kernels + j](x)
|
||||||
|
else:
|
||||||
|
xs += self.resblocks[i * self.num_kernels + j](x)
|
||||||
|
x = xs / self.num_kernels
|
||||||
|
|
||||||
|
x = F.leaky_relu(x)
|
||||||
|
x = self.conv_post(x)
|
||||||
|
magnitude = torch.exp(x[:, :self.istft_params["n_fft"] // 2 + 1, :])
|
||||||
|
phase = torch.sin(x[:, self.istft_params["n_fft"] // 2 + 1:, :]) # actually, sin is redundancy
|
||||||
|
|
||||||
|
x = self._istft(magnitude, phase)
|
||||||
|
if finalize is False:
|
||||||
|
x = x[:, :-int(np.prod(self.upsample_rates) * self.istft_params['hop_len'])]
|
||||||
|
x = torch.clamp(x, -self.audio_limit, self.audio_limit)
|
||||||
|
return x
|
||||||
|
|
||||||
|
@torch.inference_mode()
|
||||||
|
def inference(self, speech_feat: torch.Tensor, finalize: bool = True) -> torch.Tensor:
|
||||||
|
# mel->f0 NOTE f0_predictor precision is crucial for causal inference, move self.f0_predictor to cpu if necessary
|
||||||
|
self.f0_predictor.to('cpu')
|
||||||
|
f0 = self.f0_predictor(speech_feat.cpu(), finalize=finalize).to(speech_feat)
|
||||||
|
# f0->source
|
||||||
|
s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
||||||
|
s, _, _ = self.m_source(s)
|
||||||
|
s = s.transpose(1, 2)
|
||||||
|
if finalize is True:
|
||||||
|
generated_speech = self.decode(x=speech_feat, s=s, finalize=finalize)
|
||||||
|
else:
|
||||||
|
generated_speech = self.decode(x=speech_feat[:, :, :-self.f0_predictor.condnet[0].causal_padding], s=s, finalize=finalize)
|
||||||
|
return generated_speech, s
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
torch.backends.cudnn.deterministic = True
|
||||||
|
torch.backends.cudnn.benchmark = False
|
||||||
|
from hyperpyyaml import load_hyperpyyaml
|
||||||
|
with open('./pretrained_models/Fun-CosyVoice3-0.5B/cosyvoice3.yaml', 'r') as f:
|
||||||
|
configs = load_hyperpyyaml(f, overrides={'llm': None, 'flow': None})
|
||||||
|
model = configs['hift']
|
||||||
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
max_len, chunk_size, context_size = 300, 30, 8
|
||||||
|
mel = torch.rand(1, 80, max_len).to(device)
|
||||||
|
pred_gt, _ = model.inference(mel)
|
||||||
|
for i in range(0, max_len, chunk_size):
|
||||||
|
finalize = True if i + chunk_size + context_size >= max_len else False
|
||||||
|
pred_chunk, _ = model.inference(mel[:, :, : i + chunk_size + context_size], finalize=finalize)
|
||||||
|
pred_chunk = pred_chunk[:, i * 480:]
|
||||||
|
print((pred_gt[:, i * 480:i * 480 + pred_chunk.shape[1]] - pred_chunk).abs().max().item())
|
||||||
|
|||||||
@@ -17,6 +17,7 @@ import random
|
|||||||
import time
|
import time
|
||||||
import threading
|
import threading
|
||||||
from typing import Dict, Optional, Callable, List, Generator
|
from typing import Dict, Optional, Callable, List, Generator
|
||||||
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
from torch import nn
|
from torch import nn
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
@@ -56,8 +57,9 @@ class TransformerLM(torch.nn.Module):
|
|||||||
)
|
)
|
||||||
|
|
||||||
# 2. build speech token language model related modules
|
# 2. build speech token language model related modules
|
||||||
self.sos_eos = 0
|
self.sos = 0
|
||||||
self.task_id = 1
|
self.task_id = 1
|
||||||
|
self.eos_token = self.speech_token_size
|
||||||
self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
|
self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
|
||||||
self.llm = llm
|
self.llm = llm
|
||||||
self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 1)
|
self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 1)
|
||||||
@@ -85,10 +87,10 @@ class TransformerLM(torch.nn.Module):
|
|||||||
encoder_out = self.text_encoder_affine_layer(encoder_out)
|
encoder_out = self.text_encoder_affine_layer(encoder_out)
|
||||||
return encoder_out, encoder_out_lens
|
return encoder_out, encoder_out_lens
|
||||||
|
|
||||||
def pad_unpad_sequence(self, sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len):
|
def pad_unpad_sequence(self, sos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len):
|
||||||
text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
|
text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
|
||||||
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
|
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
|
||||||
lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0), embedding[i], text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0)
|
lm_input = [torch.concat([sos_emb.squeeze(dim=0), embedding[i], text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0)
|
||||||
for i in range(len(text_token))]
|
for i in range(len(text_token))]
|
||||||
lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
|
lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
|
||||||
lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
|
lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
|
||||||
@@ -126,15 +128,15 @@ class TransformerLM(torch.nn.Module):
|
|||||||
embedding = self.spk_embed_affine_layer(embedding)
|
embedding = self.spk_embed_affine_layer(embedding)
|
||||||
embedding = embedding.unsqueeze(1)
|
embedding = embedding.unsqueeze(1)
|
||||||
|
|
||||||
# 3. eos and task_id
|
# 3. sos and task_id
|
||||||
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
sos_emb = self.llm_embedding.weight[self.sos].reshape(1, 1, -1)
|
||||||
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||||
|
|
||||||
# 4. encode speech_token
|
# 4. encode speech_token
|
||||||
speech_token = self.speech_embedding(speech_token)
|
speech_token = self.speech_embedding(speech_token)
|
||||||
|
|
||||||
# 5. unpad and pad
|
# 5. unpad and pad
|
||||||
lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, embedding, text_token, text_token_len,
|
lm_input, lm_input_len = self.pad_unpad_sequence(sos_emb, embedding, text_token, text_token_len,
|
||||||
task_id_emb, speech_token, speech_token_len)
|
task_id_emb, speech_token, speech_token_len)
|
||||||
|
|
||||||
# 6. run lm forward
|
# 6. run lm forward
|
||||||
@@ -154,7 +156,7 @@ class TransformerLM(torch.nn.Module):
|
|||||||
num_trials, max_trials = 0, 100
|
num_trials, max_trials = 0, 100
|
||||||
while True:
|
while True:
|
||||||
top_ids = self.sampling(weighted_scores, decoded_tokens, sampling)
|
top_ids = self.sampling(weighted_scores, decoded_tokens, sampling)
|
||||||
if (not ignore_eos) or (self.speech_token_size not in top_ids):
|
if (not ignore_eos) or (top_ids < self.speech_token_size):
|
||||||
break
|
break
|
||||||
num_trials += 1
|
num_trials += 1
|
||||||
if num_trials > max_trials:
|
if num_trials > max_trials:
|
||||||
@@ -193,13 +195,13 @@ class TransformerLM(torch.nn.Module):
|
|||||||
embedding = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device).to(text.dtype)
|
embedding = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device).to(text.dtype)
|
||||||
|
|
||||||
# 3. concat llm_input
|
# 3. concat llm_input
|
||||||
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
sos_emb = self.llm_embedding.weight[self.sos].reshape(1, 1, -1)
|
||||||
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||||
if prompt_speech_token_len != 0:
|
if prompt_speech_token_len != 0:
|
||||||
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
||||||
else:
|
else:
|
||||||
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
|
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
|
||||||
lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1)
|
lm_input = torch.concat([sos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1)
|
||||||
|
|
||||||
# 4. cal min/max_length
|
# 4. cal min/max_length
|
||||||
min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
|
min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
|
||||||
@@ -215,11 +217,8 @@ class TransformerLM(torch.nn.Module):
|
|||||||
att_mask=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]),
|
att_mask=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]),
|
||||||
device=lm_input.device)).to(torch.bool))
|
device=lm_input.device)).to(torch.bool))
|
||||||
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
||||||
# force continue decode first token
|
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False)
|
||||||
if i == 0:
|
if top_ids == self.eos_token:
|
||||||
logp[:, self.speech_token_size] = -float('inf')
|
|
||||||
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
|
|
||||||
if top_ids == self.speech_token_size:
|
|
||||||
break
|
break
|
||||||
# in stream mode, yield token one by one
|
# in stream mode, yield token one by one
|
||||||
yield top_ids
|
yield top_ids
|
||||||
@@ -276,9 +275,10 @@ class Qwen2LM(TransformerLM):
|
|||||||
self.llm_output_size = llm_output_size
|
self.llm_output_size = llm_output_size
|
||||||
self.speech_token_size = speech_token_size
|
self.speech_token_size = speech_token_size
|
||||||
# 2. build speech token language model related modules
|
# 2. build speech token language model related modules
|
||||||
self.sos_eos = 0
|
self.sos = 0
|
||||||
self.task_id = 1
|
self.task_id = 1
|
||||||
self.fill_token = 2
|
self.eos_token = speech_token_size
|
||||||
|
self.fill_token = speech_token_size + 2
|
||||||
|
|
||||||
self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
|
self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
|
||||||
self.llm = llm
|
self.llm = llm
|
||||||
@@ -301,18 +301,23 @@ class Qwen2LM(TransformerLM):
|
|||||||
self.stop_token_ids = [speech_token_size + i for i in range(3)]
|
self.stop_token_ids = [speech_token_size + i for i in range(3)]
|
||||||
self.vllm_output_queue = {}
|
self.vllm_output_queue = {}
|
||||||
|
|
||||||
def prepare_lm_input_target(self, text_token, text_token_emb, text_token_len, speech_token, speech_token_emb, speech_token_len):
|
def prepare_lm_input_target(self, sos_emb, text_token, text_token_emb, text_token_len, task_id_emb, speech_token, speech_token_emb, speech_token_len, instruct_token=None, instruct_token_emb=None, instruct_token_len=None):
|
||||||
lm_target, lm_input = [], []
|
lm_target, lm_input = [], []
|
||||||
text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
|
text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
|
||||||
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
|
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
|
||||||
text_token_emb = unpad_sequence(text_token_emb, text_token_len.cpu(), batch_first=True)
|
text_token_emb = unpad_sequence(text_token_emb, text_token_len.cpu(), batch_first=True)
|
||||||
speech_token_emb = unpad_sequence(speech_token_emb, speech_token_len.cpu(), batch_first=True)
|
speech_token_emb = unpad_sequence(speech_token_emb, speech_token_len.cpu(), batch_first=True)
|
||||||
|
# NOTE add instruct_token in CosyVoice3
|
||||||
|
if instruct_token is not None and instruct_token_emb is not None and instruct_token_len is not None:
|
||||||
|
instruct_token = unpad_sequence(instruct_token, instruct_token_len.cpu(), batch_first=True)
|
||||||
|
instruct_token_emb = unpad_sequence(instruct_token_emb, instruct_token_len.cpu(), batch_first=True)
|
||||||
for i in range(len(text_token)):
|
for i in range(len(text_token)):
|
||||||
# bistream sequence
|
# bistream sequence
|
||||||
if random.random() < 0.5 and speech_token_len[i] / text_token_len[i] > self.mix_ratio[1] / self.mix_ratio[0]:
|
if random.random() < 0.5 and speech_token_len[i] / text_token_len[i] > self.mix_ratio[1] / self.mix_ratio[0]:
|
||||||
this_lm_target, this_lm_input = [], []
|
this_lm_target, this_lm_input = [IGNORE_ID], [sos_emb.squeeze(dim=0)]
|
||||||
this_lm_target.append(IGNORE_ID)
|
if instruct_token is not None and instruct_token_emb is not None and instruct_token_len is not None:
|
||||||
this_lm_input.append(self.llm_embedding.weight[self.sos_eos].reshape(1, -1))
|
this_lm_target += [IGNORE_ID] * instruct_token_len[i]
|
||||||
|
this_lm_input.append(instruct_token_emb[i])
|
||||||
for j in range(((text_token_len[i] + 1) / self.mix_ratio[0]).ceil().int().item()):
|
for j in range(((text_token_len[i] + 1) / self.mix_ratio[0]).ceil().int().item()):
|
||||||
this_text_token = text_token[i][j * self.mix_ratio[0]: (j + 1) * self.mix_ratio[0]].tolist()
|
this_text_token = text_token[i][j * self.mix_ratio[0]: (j + 1) * self.mix_ratio[0]].tolist()
|
||||||
this_speech_token = speech_token[i][j * self.mix_ratio[1]: (j + 1) * self.mix_ratio[1]].tolist()
|
this_speech_token = speech_token[i][j * self.mix_ratio[1]: (j + 1) * self.mix_ratio[1]].tolist()
|
||||||
@@ -320,22 +325,21 @@ class Qwen2LM(TransformerLM):
|
|||||||
assert len(this_speech_token) == self.mix_ratio[1]
|
assert len(this_speech_token) == self.mix_ratio[1]
|
||||||
this_lm_target += [IGNORE_ID] * (self.mix_ratio[0] - 1)
|
this_lm_target += [IGNORE_ID] * (self.mix_ratio[0] - 1)
|
||||||
this_lm_target += this_speech_token
|
this_lm_target += this_speech_token
|
||||||
this_lm_target.append(self.speech_token_size + 2)
|
this_lm_target.append(self.fill_token)
|
||||||
this_lm_input.append(text_token_emb[i][j * self.mix_ratio[0]: (j + 1) * self.mix_ratio[0]])
|
this_lm_input.append(text_token_emb[i][j * self.mix_ratio[0]: (j + 1) * self.mix_ratio[0]])
|
||||||
this_lm_input.append(speech_token_emb[i][j * self.mix_ratio[1]: (j + 1) * self.mix_ratio[1]])
|
this_lm_input.append(speech_token_emb[i][j * self.mix_ratio[1]: (j + 1) * self.mix_ratio[1]])
|
||||||
else:
|
else:
|
||||||
this_lm_target += [-1] * len(this_text_token)
|
this_lm_target += [-1] * len(this_text_token)
|
||||||
this_lm_target += speech_token[i][j * self.mix_ratio[1]:].tolist()
|
this_lm_target += speech_token[i][j * self.mix_ratio[1]:].tolist()
|
||||||
this_lm_target.append(self.speech_token_size)
|
this_lm_target.append(self.eos_token)
|
||||||
this_lm_input.append(text_token_emb[i][j * self.mix_ratio[0]:])
|
this_lm_input.append(text_token_emb[i][j * self.mix_ratio[0]:])
|
||||||
this_lm_input.append(self.llm_embedding.weight[self.task_id].reshape(1, -1))
|
this_lm_input.append(task_id_emb.squeeze(dim=0))
|
||||||
this_lm_input.append(speech_token_emb[i][j * self.mix_ratio[1]:])
|
this_lm_input.append(speech_token_emb[i][j * self.mix_ratio[1]:])
|
||||||
this_lm_target, this_lm_input = torch.tensor(this_lm_target), torch.concat(this_lm_input, dim=0)
|
this_lm_target, this_lm_input = torch.tensor(this_lm_target), torch.concat(this_lm_input, dim=0)
|
||||||
# unistream sequence
|
# unistream sequence
|
||||||
else:
|
else:
|
||||||
this_lm_target = torch.tensor([IGNORE_ID] * (1 + text_token_len[i]) + speech_token[i].tolist() + [self.speech_token_size])
|
this_lm_target = torch.tensor([IGNORE_ID] * (1 + instruct_token_len[i] + text_token_len[i]) + speech_token[i].tolist() + [self.eos_token])
|
||||||
this_lm_input = torch.concat([self.llm_embedding.weight[self.sos_eos].reshape(1, -1), text_token_emb[i],
|
this_lm_input = torch.concat([sos_emb.squeeze(dim=0), instruct_token_emb[i], text_token_emb[i], task_id_emb.squeeze(dim=0), speech_token_emb[i]], dim=0)
|
||||||
self.llm_embedding.weight[self.task_id].reshape(1, -1), speech_token_emb[i]], dim=0)
|
|
||||||
lm_target.append(this_lm_target)
|
lm_target.append(this_lm_target)
|
||||||
lm_input.append(this_lm_input)
|
lm_input.append(this_lm_input)
|
||||||
lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
|
lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
|
||||||
@@ -363,11 +367,16 @@ class Qwen2LM(TransformerLM):
|
|||||||
# 1. encode text_token
|
# 1. encode text_token
|
||||||
text_token_emb = self.llm.model.model.embed_tokens(text_token)
|
text_token_emb = self.llm.model.model.embed_tokens(text_token)
|
||||||
|
|
||||||
|
# 3. sos and task_id
|
||||||
|
sos_emb = self.llm_embedding.weight[self.sos].reshape(1, 1, -1)
|
||||||
|
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||||
|
|
||||||
# 2. encode speech_token
|
# 2. encode speech_token
|
||||||
speech_token_emb = self.speech_embedding(speech_token)
|
speech_token_emb = self.speech_embedding(speech_token)
|
||||||
|
|
||||||
# 3. prepare llm_input/target
|
# 3. prepare llm_input/target
|
||||||
lm_target, lm_input, lm_input_len = self.prepare_lm_input_target(text_token, text_token_emb, text_token_len, speech_token, speech_token_emb, speech_token_len)
|
lm_target, lm_input, lm_input_len = self.prepare_lm_input_target(sos_emb, text_token, text_token_emb, text_token_len, task_id_emb,
|
||||||
|
speech_token, speech_token_emb, speech_token_len)
|
||||||
lm_target = lm_target.to(device)
|
lm_target = lm_target.to(device)
|
||||||
|
|
||||||
# 4. run lm forward
|
# 4. run lm forward
|
||||||
@@ -392,6 +401,10 @@ class Qwen2LM(TransformerLM):
|
|||||||
# 1. encode text_token
|
# 1. encode text_token
|
||||||
text_token_emb = self.llm.model.model.embed_tokens(text_token)
|
text_token_emb = self.llm.model.model.embed_tokens(text_token)
|
||||||
|
|
||||||
|
# 3. sos and task_id
|
||||||
|
sos_emb = self.llm_embedding.weight[self.sos].reshape(1, 1, -1)
|
||||||
|
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||||
|
|
||||||
# 2. encode speech_token
|
# 2. encode speech_token
|
||||||
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
|
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
|
||||||
reject_speech_token = unpad_sequence(reject_speech_token, reject_speech_token_len.cpu(), batch_first=True)
|
reject_speech_token = unpad_sequence(reject_speech_token, reject_speech_token_len.cpu(), batch_first=True)
|
||||||
@@ -401,8 +414,8 @@ class Qwen2LM(TransformerLM):
|
|||||||
speech_token_combined_emb = self.speech_embedding(speech_token_combined)
|
speech_token_combined_emb = self.speech_embedding(speech_token_combined)
|
||||||
|
|
||||||
# 3. prepare llm_input/target
|
# 3. prepare llm_input/target
|
||||||
lm_target, lm_input, lm_input_len = self.prepare_lm_input_target(text_token.repeat(2, 1), text_token_emb.repeat(2, 1, 1), text_token_len.repeat(2),
|
lm_target, lm_input, lm_input_len = self.prepare_lm_input_target(sos_emb, text_token.repeat(2, 1), text_token_emb.repeat(2, 1, 1), text_token_len.repeat(2),
|
||||||
speech_token_combined, speech_token_combined_emb, speech_token_combined_len)
|
task_id_emb, speech_token_combined, speech_token_combined_emb, speech_token_combined_len)
|
||||||
lm_target = lm_target.to(device)
|
lm_target = lm_target.to(device)
|
||||||
|
|
||||||
# 4. run lm forward
|
# 4. run lm forward
|
||||||
@@ -445,13 +458,13 @@ class Qwen2LM(TransformerLM):
|
|||||||
text = self.llm.model.model.embed_tokens(text)
|
text = self.llm.model.model.embed_tokens(text)
|
||||||
|
|
||||||
# 3. concat llm_input
|
# 3. concat llm_input
|
||||||
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
sos_emb = self.llm_embedding.weight[self.sos].reshape(1, 1, -1)
|
||||||
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||||
if prompt_speech_token_len != 0:
|
if prompt_speech_token_len != 0:
|
||||||
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
||||||
else:
|
else:
|
||||||
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
|
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
|
||||||
lm_input = torch.concat([sos_eos_emb, text, task_id_emb, prompt_speech_token_emb], dim=1)
|
lm_input = torch.concat([sos_emb, text, task_id_emb, prompt_speech_token_emb], dim=1)
|
||||||
|
|
||||||
# 4. cal min/max_length
|
# 4. cal min/max_length
|
||||||
min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
|
min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
|
||||||
@@ -500,11 +513,9 @@ class Qwen2LM(TransformerLM):
|
|||||||
masks=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool),
|
masks=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool),
|
||||||
cache=cache)
|
cache=cache)
|
||||||
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
||||||
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
|
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False)
|
||||||
if top_ids == self.speech_token_size:
|
if top_ids in self.stop_token_ids:
|
||||||
break
|
break
|
||||||
if top_ids > self.speech_token_size:
|
|
||||||
continue
|
|
||||||
# in stream mode, yield token one by one
|
# in stream mode, yield token one by one
|
||||||
yield top_ids
|
yield top_ids
|
||||||
out_tokens.append(top_ids)
|
out_tokens.append(top_ids)
|
||||||
@@ -526,20 +537,20 @@ class Qwen2LM(TransformerLM):
|
|||||||
|
|
||||||
device = prompt_text.device
|
device = prompt_text.device
|
||||||
# 1. prepare input
|
# 1. prepare input
|
||||||
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
sos_emb = self.llm_embedding.weight[self.sos].reshape(1, 1, -1)
|
||||||
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||||
if prompt_speech_token_len != 0:
|
if prompt_speech_token_len != 0:
|
||||||
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
||||||
else:
|
else:
|
||||||
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=prompt_text.dtype).to(device)
|
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=prompt_text.dtype).to(device)
|
||||||
lm_input = torch.concat([sos_eos_emb], dim=1)
|
lm_input = torch.concat([sos_emb], dim=1)
|
||||||
|
|
||||||
# 2. iterate text
|
# 2. iterate text
|
||||||
out_tokens = []
|
out_tokens = []
|
||||||
cache = None
|
cache = None
|
||||||
# NOTE init prompt_text as text_cache as it is basically impossible prompt_speech_token/prompt_text < 15/5
|
# NOTE init prompt_text as text_cache as it is basically impossible prompt_speech_token/prompt_text < 15/5
|
||||||
text_cache = self.llm.model.model.embed_tokens(prompt_text)
|
text_cache = self.llm.model.model.embed_tokens(prompt_text)
|
||||||
next_fill_index = -1
|
next_fill_index = (int(prompt_speech_token.shape[1] / self.mix_ratio[1]) + 1) * self.mix_ratio[1] - prompt_speech_token.shape[1]
|
||||||
for this_text in text:
|
for this_text in text:
|
||||||
text_cache = torch.concat([text_cache, self.llm.model.model.embed_tokens(this_text)], dim=1)
|
text_cache = torch.concat([text_cache, self.llm.model.model.embed_tokens(this_text)], dim=1)
|
||||||
# prompt_speech_token_emb not empty, try append to lm_input
|
# prompt_speech_token_emb not empty, try append to lm_input
|
||||||
@@ -554,12 +565,12 @@ class Qwen2LM(TransformerLM):
|
|||||||
break
|
break
|
||||||
# no prompt_speech_token_emb remain, can decode some speech token
|
# no prompt_speech_token_emb remain, can decode some speech token
|
||||||
if prompt_speech_token_emb.size(1) == 0:
|
if prompt_speech_token_emb.size(1) == 0:
|
||||||
if (len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2) or (len(out_tokens) == 0 and lm_input.size(1) == 1):
|
if (len(out_tokens) != 0 and out_tokens[-1] == self.fill_token) or (len(out_tokens) == 0 and lm_input.size(1) == 1):
|
||||||
logging.info('get fill token, need to append more text token')
|
logging.info('get fill token, need to append more text token')
|
||||||
if text_cache.size(1) >= self.mix_ratio[0]:
|
if text_cache.size(1) >= self.mix_ratio[0]:
|
||||||
lm_input_text = text_cache[:, :self.mix_ratio[0]]
|
lm_input_text = text_cache[:, :self.mix_ratio[0]]
|
||||||
logging.info('append {} text token'.format(lm_input_text.size(1)))
|
logging.info('append {} text token'.format(lm_input_text.size(1)))
|
||||||
if len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2:
|
if len(out_tokens) != 0 and out_tokens[-1] == self.fill_token:
|
||||||
lm_input = lm_input_text
|
lm_input = lm_input_text
|
||||||
else:
|
else:
|
||||||
lm_input = torch.concat([lm_input, lm_input_text], dim=1)
|
lm_input = torch.concat([lm_input, lm_input_text], dim=1)
|
||||||
@@ -574,16 +585,16 @@ class Qwen2LM(TransformerLM):
|
|||||||
cache=cache)
|
cache=cache)
|
||||||
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
||||||
if next_fill_index != -1 and len(out_tokens) == next_fill_index:
|
if next_fill_index != -1 and len(out_tokens) == next_fill_index:
|
||||||
top_ids = self.speech_token_size + 2
|
top_ids = self.fill_token
|
||||||
next_fill_index += (self.mix_ratio[1] + 1)
|
next_fill_index += (self.mix_ratio[1] + 1)
|
||||||
else:
|
else:
|
||||||
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True).item()
|
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True)
|
||||||
if top_ids == self.speech_token_size + 2:
|
if top_ids == self.fill_token:
|
||||||
next_fill_index = len(out_tokens) + self.mix_ratio[1] + 1
|
next_fill_index = len(out_tokens) + self.mix_ratio[1] + 1
|
||||||
logging.info('fill_token index {} next fill_token index {}'.format(len(out_tokens), next_fill_index))
|
logging.info('fill_token index {} next fill_token index {}'.format(len(out_tokens), next_fill_index))
|
||||||
out_tokens.append(top_ids)
|
out_tokens.append(top_ids)
|
||||||
if top_ids >= self.speech_token_size:
|
if top_ids >= self.speech_token_size:
|
||||||
if top_ids == self.speech_token_size + 2:
|
if top_ids == self.fill_token:
|
||||||
break
|
break
|
||||||
else:
|
else:
|
||||||
raise ValueError('should not get token {}'.format(top_ids))
|
raise ValueError('should not get token {}'.format(top_ids))
|
||||||
@@ -599,13 +610,136 @@ class Qwen2LM(TransformerLM):
|
|||||||
masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool),
|
masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool),
|
||||||
cache=cache)
|
cache=cache)
|
||||||
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
||||||
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=False).item()
|
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=False)
|
||||||
out_tokens.append(top_ids)
|
out_tokens.append(top_ids)
|
||||||
if top_ids >= self.speech_token_size:
|
if top_ids >= self.speech_token_size:
|
||||||
if top_ids == self.speech_token_size:
|
if top_ids == self.eos_token:
|
||||||
break
|
break
|
||||||
else:
|
else:
|
||||||
raise ValueError('should not get token {}'.format(top_ids))
|
raise ValueError('should not get token {}'.format(top_ids))
|
||||||
# in stream mode, yield token one by one
|
# in stream mode, yield token one by one
|
||||||
yield top_ids
|
yield top_ids
|
||||||
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
||||||
|
|
||||||
|
|
||||||
|
class CosyVoice3LM(Qwen2LM):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
llm_input_size: int,
|
||||||
|
llm_output_size: int,
|
||||||
|
speech_token_size: int,
|
||||||
|
llm: torch.nn.Module,
|
||||||
|
sampling: Callable,
|
||||||
|
length_normalized_loss: bool = True,
|
||||||
|
lsm_weight: float = 0.0,
|
||||||
|
mix_ratio: List[int] = [5, 15],
|
||||||
|
):
|
||||||
|
torch.nn.Module.__init__(self)
|
||||||
|
self.llm_input_size = llm_input_size
|
||||||
|
self.llm_output_size = llm_output_size
|
||||||
|
self.speech_token_size = speech_token_size
|
||||||
|
# 2. build speech token language model related modules
|
||||||
|
self.sos = speech_token_size + 0
|
||||||
|
self.eos_token = speech_token_size + 1
|
||||||
|
self.task_id = speech_token_size + 2
|
||||||
|
self.fill_token = speech_token_size + 3
|
||||||
|
|
||||||
|
self.llm = llm
|
||||||
|
self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 200, bias=False)
|
||||||
|
self.criterion_ce = LabelSmoothingLoss(
|
||||||
|
size=speech_token_size + 200,
|
||||||
|
padding_idx=IGNORE_ID,
|
||||||
|
smoothing=lsm_weight,
|
||||||
|
normalize_length=length_normalized_loss,
|
||||||
|
)
|
||||||
|
|
||||||
|
# 3. [Optional] build speech token related modules
|
||||||
|
self.speech_embedding = torch.nn.Embedding(speech_token_size + 200, llm_input_size)
|
||||||
|
|
||||||
|
# 4. sampling method
|
||||||
|
self.sampling = sampling
|
||||||
|
self.mix_ratio = mix_ratio
|
||||||
|
|
||||||
|
# 5. vllm related
|
||||||
|
self.stop_token_ids = [speech_token_size + i for i in range(200)]
|
||||||
|
self.vllm_output_queue = {}
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
batch: dict,
|
||||||
|
device: torch.device,
|
||||||
|
) -> Dict[str, Optional[torch.Tensor]]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
text: (B, L, D)
|
||||||
|
text_lengths: (B,)
|
||||||
|
audio: (B, T, N) or (B, T)
|
||||||
|
audio_lengths: (B,)
|
||||||
|
"""
|
||||||
|
text_token = batch['text_token'].to(device)
|
||||||
|
text_token_len = batch['text_token_len'].to(device)
|
||||||
|
speech_token = batch['speech_token'].to(device)
|
||||||
|
speech_token_len = batch['speech_token_len'].to(device)
|
||||||
|
# NOTE should append instruct_token to sequence, not implemented yet
|
||||||
|
instruct_token = batch['instruct_token'].to(device)
|
||||||
|
instruct_token_len = batch['instruct_token_len'].to(device)
|
||||||
|
|
||||||
|
# 1. encode text_token
|
||||||
|
text_token_emb = self.llm.model.model.embed_tokens(text_token)
|
||||||
|
instruct_token_emb = self.llm.model.model.embed_tokens(instruct_token)
|
||||||
|
|
||||||
|
# 3. sos and task_id
|
||||||
|
sos_emb = self.speech_embedding.weight[self.sos].reshape(1, 1, -1)
|
||||||
|
task_id_emb = self.speech_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||||
|
|
||||||
|
# 2. encode speech_token
|
||||||
|
speech_token_emb = self.speech_embedding(speech_token)
|
||||||
|
|
||||||
|
# 3. prepare llm_input/target
|
||||||
|
lm_target, lm_input, lm_input_len = self.prepare_lm_input_target(sos_emb, text_token, text_token_emb, text_token_len, task_id_emb,
|
||||||
|
speech_token, speech_token_emb, speech_token_len, instruct_token, instruct_token_emb, instruct_token_len)
|
||||||
|
lm_target = lm_target.to(device)
|
||||||
|
|
||||||
|
# 4. run lm forward
|
||||||
|
lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
|
||||||
|
logits = self.llm_decoder(lm_output)
|
||||||
|
loss = self.criterion_ce(logits, lm_target.to(device))
|
||||||
|
acc = th_accuracy(logits.view(-1, self.speech_token_size + 200), lm_target, ignore_label=IGNORE_ID)
|
||||||
|
return {'loss': loss, 'acc': acc}
|
||||||
|
|
||||||
|
@torch.inference_mode()
|
||||||
|
def inference(
|
||||||
|
self,
|
||||||
|
text: torch.Tensor,
|
||||||
|
text_len: torch.Tensor,
|
||||||
|
prompt_text: torch.Tensor,
|
||||||
|
prompt_text_len: torch.Tensor,
|
||||||
|
prompt_speech_token: torch.Tensor,
|
||||||
|
prompt_speech_token_len: torch.Tensor,
|
||||||
|
embedding: torch.Tensor,
|
||||||
|
sampling: int = 25,
|
||||||
|
max_token_text_ratio: float = 20,
|
||||||
|
min_token_text_ratio: float = 2,
|
||||||
|
uuid: str = '',
|
||||||
|
) -> Generator[torch.Tensor, None, None]:
|
||||||
|
device = text.device
|
||||||
|
text = torch.concat([prompt_text, text], dim=1)
|
||||||
|
text_len += prompt_text_len
|
||||||
|
text = self.llm.model.model.embed_tokens(text)
|
||||||
|
|
||||||
|
# 3. concat llm_input
|
||||||
|
sos_emb = self.speech_embedding.weight[self.sos].reshape(1, 1, -1)
|
||||||
|
task_id_emb = self.speech_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||||
|
if prompt_speech_token_len != 0:
|
||||||
|
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
||||||
|
else:
|
||||||
|
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
|
||||||
|
lm_input = torch.concat([sos_emb, text, task_id_emb, prompt_speech_token_emb], dim=1)
|
||||||
|
|
||||||
|
# 4. cal min/max_length
|
||||||
|
min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
|
||||||
|
max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
|
||||||
|
|
||||||
|
# 5. step by step decode
|
||||||
|
for token in self.inference_wrapper(lm_input, sampling, min_len, max_len, uuid):
|
||||||
|
yield token
|
||||||
|
|||||||
@@ -238,7 +238,7 @@ def get_tokenizer(
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
class QwenTokenizer():
|
class CosyVoice2Tokenizer():
|
||||||
def __init__(self, token_path, skip_special_tokens=True):
|
def __init__(self, token_path, skip_special_tokens=True):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
# NOTE: non-chat model, all these special tokens keep randomly initialized.
|
# NOTE: non-chat model, all these special tokens keep randomly initialized.
|
||||||
@@ -271,9 +271,57 @@ class QwenTokenizer():
|
|||||||
return text
|
return text
|
||||||
|
|
||||||
|
|
||||||
|
class CosyVoice3Tokenizer(CosyVoice2Tokenizer):
|
||||||
|
def __init__(self, token_path, skip_special_tokens=True):
|
||||||
|
# NOTE: non-chat model, all these special tokens keep randomly initialized.
|
||||||
|
special_tokens = {
|
||||||
|
'eos_token': '<|endoftext|>',
|
||||||
|
'pad_token': '<|endoftext|>',
|
||||||
|
'additional_special_tokens': [
|
||||||
|
'<|im_start|>', '<|im_end|>', '<|endofprompt|>',
|
||||||
|
'[breath]', '<strong>', '</strong>', '[noise]',
|
||||||
|
'[laughter]', '[cough]', '[clucking]', '[accent]',
|
||||||
|
'[quick_breath]',
|
||||||
|
"<laughter>", "</laughter>",
|
||||||
|
"[hissing]", "[sigh]", "[vocalized-noise]",
|
||||||
|
"[lipsmack]", "[mn]", "<|endofsystem|>",
|
||||||
|
"[AA]", "[AA0]", "[AA1]", "[AA2]", "[AE]", "[AE0]", "[AE1]", "[AE2]", "[AH]", "[AH0]", "[AH1]", "[AH2]",
|
||||||
|
"[AO]", "[AO0]", "[AO1]", "[AO2]", "[AW]", "[AW0]", "[AW1]", "[AW2]", "[AY]", "[AY0]", "[AY1]", "[AY2]",
|
||||||
|
"[B]", "[CH]", "[D]", "[DH]", "[EH]", "[EH0]", "[EH1]", "[EH2]", "[ER]", "[ER0]", "[ER1]", "[ER2]", "[EY]",
|
||||||
|
"[EY0]", "[EY1]", "[EY2]", "[F]", "[G]", "[HH]", "[IH]", "[IH0]", "[IH1]", "[IH2]", "[IY]", "[IY0]", "[IY1]",
|
||||||
|
"[IY2]", "[JH]", "[K]", "[L]", "[M]", "[N]", "[NG]", "[OW]", "[OW0]", "[OW1]", "[OW2]", "[OY]", "[OY0]",
|
||||||
|
"[OY1]", "[OY2]", "[P]", "[R]", "[S]", "[SH]", "[T]", "[TH]", "[UH]", "[UH0]", "[UH1]", "[UH2]", "[UW]",
|
||||||
|
"[UW0]", "[UW1]", "[UW2]", "[V]", "[W]", "[Y]", "[Z]", "[ZH]",
|
||||||
|
"[a]", "[ai]", "[an]", "[ang]", "[ao]", "[b]", "[c]", "[ch]", "[d]", "[e]", "[ei]", "[en]", "[eng]", "[f]",
|
||||||
|
"[g]", "[h]", "[i]", "[ian]", "[in]", "[ing]", "[iu]", "[ià]", "[iàn]", "[iàng]", "[iào]", "[iá]", "[ián]",
|
||||||
|
"[iáng]", "[iáo]", "[iè]", "[ié]", "[iòng]", "[ióng]", "[iù]", "[iú]", "[iā]", "[iān]", "[iāng]", "[iāo]",
|
||||||
|
"[iē]", "[iě]", "[iōng]", "[iū]", "[iǎ]", "[iǎn]", "[iǎng]", "[iǎo]", "[iǒng]", "[iǔ]", "[j]", "[k]", "[l]",
|
||||||
|
"[m]", "[n]", "[o]", "[ong]", "[ou]", "[p]", "[q]", "[r]", "[s]", "[sh]", "[t]", "[u]", "[uang]", "[ue]",
|
||||||
|
"[un]", "[uo]", "[uà]", "[uài]", "[uàn]", "[uàng]", "[uá]", "[uái]", "[uán]", "[uáng]", "[uè]", "[ué]", "[uì]",
|
||||||
|
"[uí]", "[uò]", "[uó]", "[uā]", "[uāi]", "[uān]", "[uāng]", "[uē]", "[uě]", "[uī]", "[uō]", "[uǎ]", "[uǎi]",
|
||||||
|
"[uǎn]", "[uǎng]", "[uǐ]", "[uǒ]", "[vè]", "[w]", "[x]", "[y]", "[z]", "[zh]", "[à]", "[ài]", "[àn]", "[àng]",
|
||||||
|
"[ào]", "[á]", "[ái]", "[án]", "[áng]", "[áo]", "[è]", "[èi]", "[èn]", "[èng]", "[èr]", "[é]", "[éi]", "[én]",
|
||||||
|
"[éng]", "[ér]", "[ì]", "[ìn]", "[ìng]", "[í]", "[ín]", "[íng]", "[ò]", "[òng]", "[òu]", "[ó]", "[óng]", "[óu]",
|
||||||
|
"[ù]", "[ùn]", "[ú]", "[ún]", "[ā]", "[āi]", "[ān]", "[āng]", "[āo]", "[ē]", "[ēi]", "[ēn]", "[ēng]", "[ě]",
|
||||||
|
"[ěi]", "[ěn]", "[ěng]", "[ěr]", "[ī]", "[īn]", "[īng]", "[ō]", "[ōng]", "[ōu]", "[ū]", "[ūn]", "[ǎ]", "[ǎi]",
|
||||||
|
"[ǎn]", "[ǎng]", "[ǎo]", "[ǐ]", "[ǐn]", "[ǐng]", "[ǒ]", "[ǒng]", "[ǒu]", "[ǔ]", "[ǔn]", "[ǘ]", "[ǚ]", "[ǜ]"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
self.special_tokens = special_tokens
|
||||||
|
self.tokenizer = AutoTokenizer.from_pretrained(token_path)
|
||||||
|
self.tokenizer.add_special_tokens(special_tokens)
|
||||||
|
self.skip_special_tokens = skip_special_tokens
|
||||||
|
|
||||||
|
|
||||||
@lru_cache(maxsize=None)
|
@lru_cache(maxsize=None)
|
||||||
def get_qwen_tokenizer(
|
def get_qwen_tokenizer(
|
||||||
token_path: str,
|
token_path: str,
|
||||||
skip_special_tokens: bool
|
skip_special_tokens: bool,
|
||||||
) -> QwenTokenizer:
|
version: str = 'cosyvoice2'
|
||||||
return QwenTokenizer(token_path=token_path, skip_special_tokens=skip_special_tokens)
|
):
|
||||||
|
if version == 'cosyvoice2':
|
||||||
|
return CosyVoice2Tokenizer(token_path=token_path, skip_special_tokens=skip_special_tokens)
|
||||||
|
elif version == 'cosyvoice3':
|
||||||
|
return CosyVoice3Tokenizer(token_path=token_path, skip_special_tokens=skip_special_tokens)
|
||||||
|
else:
|
||||||
|
raise ValueError
|
||||||
|
|||||||
@@ -19,6 +19,7 @@ from typing import Tuple
|
|||||||
|
|
||||||
import torch
|
import torch
|
||||||
from torch import nn
|
from torch import nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
|
||||||
class ConvolutionModule(nn.Module):
|
class ConvolutionModule(nn.Module):
|
||||||
@@ -143,3 +144,115 @@ class ConvolutionModule(nn.Module):
|
|||||||
x.masked_fill_(~mask_pad, 0.0)
|
x.masked_fill_(~mask_pad, 0.0)
|
||||||
|
|
||||||
return x.transpose(1, 2), new_cache
|
return x.transpose(1, 2), new_cache
|
||||||
|
|
||||||
|
|
||||||
|
# NOTE(Xiang Lyu) causal conv module used in convolution-based vocoder
|
||||||
|
class CausalConv1d(torch.nn.Conv1d):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
in_channels: int,
|
||||||
|
out_channels: int,
|
||||||
|
kernel_size: int,
|
||||||
|
stride: int = 1,
|
||||||
|
dilation: int = 1,
|
||||||
|
groups: int = 1,
|
||||||
|
bias: bool = True,
|
||||||
|
padding_mode: str = 'zeros',
|
||||||
|
causal_type: str = 'left',
|
||||||
|
device=None,
|
||||||
|
dtype=None
|
||||||
|
) -> None:
|
||||||
|
super(CausalConv1d, self).__init__(in_channels, out_channels,
|
||||||
|
kernel_size, stride=1,
|
||||||
|
padding=0, dilation=dilation,
|
||||||
|
groups=groups, bias=bias,
|
||||||
|
padding_mode=padding_mode,
|
||||||
|
device=device, dtype=dtype)
|
||||||
|
assert stride == 1
|
||||||
|
self.causal_padding = int((kernel_size * dilation - dilation) / 2) * 2 + (kernel_size + 1) % 2
|
||||||
|
assert causal_type in ['left', 'right']
|
||||||
|
self.causal_type = causal_type
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor, cache: torch.Tensor = torch.zeros(0, 0, 0)) -> Tuple[torch.Tensor]:
|
||||||
|
input_timestep = x.shape[2]
|
||||||
|
if cache.size(2) == 0:
|
||||||
|
cache = torch.zeros(x.shape[0], x.shape[1], self.causal_padding).to(x)
|
||||||
|
assert cache.size(2) == self.causal_padding
|
||||||
|
if self.causal_type == 'left':
|
||||||
|
x = torch.concat([cache, x], dim=2)
|
||||||
|
else:
|
||||||
|
x = torch.concat([x, cache], dim=2)
|
||||||
|
x = super(CausalConv1d, self).forward(x)
|
||||||
|
assert x.shape[2] == input_timestep
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class CausalConv1dDownSample(torch.nn.Conv1d):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
in_channels: int,
|
||||||
|
out_channels: int,
|
||||||
|
kernel_size: int,
|
||||||
|
stride: int = 1,
|
||||||
|
dilation: int = 1,
|
||||||
|
groups: int = 1,
|
||||||
|
bias: bool = True,
|
||||||
|
padding_mode: str = 'zeros',
|
||||||
|
device=None,
|
||||||
|
dtype=None
|
||||||
|
) -> None:
|
||||||
|
super(CausalConv1dDownSample, self).__init__(in_channels, out_channels,
|
||||||
|
kernel_size, stride,
|
||||||
|
padding=0, dilation=dilation,
|
||||||
|
groups=groups, bias=bias,
|
||||||
|
padding_mode=padding_mode,
|
||||||
|
device=device, dtype=dtype)
|
||||||
|
assert stride != 1 and dilation == 1
|
||||||
|
assert kernel_size % stride == 0
|
||||||
|
self.causal_padding = stride - 1
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor, cache: torch.Tensor = torch.zeros(0, 0, 0)) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
if cache.size(2) == 0:
|
||||||
|
x = F.pad(x, (self.causal_padding, 0), value=0.0)
|
||||||
|
else:
|
||||||
|
assert cache.size(2) == self.causal_padding
|
||||||
|
x = torch.concat([cache, x], dim=2)
|
||||||
|
x = super(CausalConv1dDownSample, self).forward(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class CausalConv1dUpsample(torch.nn.Conv1d):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
in_channels: int,
|
||||||
|
out_channels: int,
|
||||||
|
kernel_size: int,
|
||||||
|
stride: int = 1,
|
||||||
|
dilation: int = 1,
|
||||||
|
groups: int = 1,
|
||||||
|
bias: bool = True,
|
||||||
|
padding_mode: str = 'zeros',
|
||||||
|
device=None,
|
||||||
|
dtype=None
|
||||||
|
) -> None:
|
||||||
|
super(CausalConv1dUpsample, self).__init__(in_channels, out_channels,
|
||||||
|
kernel_size, 1,
|
||||||
|
padding=0, dilation=dilation,
|
||||||
|
groups=groups, bias=bias,
|
||||||
|
padding_mode=padding_mode,
|
||||||
|
device=device, dtype=dtype)
|
||||||
|
assert dilation == 1
|
||||||
|
self.causal_padding = kernel_size - 1
|
||||||
|
self.upsample = torch.nn.Upsample(scale_factor=stride, mode='nearest')
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor, cache: torch.Tensor = torch.zeros(0, 0, 0)) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
x = self.upsample(x)
|
||||||
|
input_timestep = x.shape[2]
|
||||||
|
if cache.size(2) == 0:
|
||||||
|
x = F.pad(x, (self.causal_padding, 0), value=0.0)
|
||||||
|
else:
|
||||||
|
assert cache.size(2) == self.causal_padding
|
||||||
|
x = torch.concat([cache, x], dim=2)
|
||||||
|
x = super(CausalConv1dUpsample, self).forward(x)
|
||||||
|
assert input_timestep == x.shape[2]
|
||||||
|
return x
|
||||||
|
|||||||
@@ -64,17 +64,18 @@ class Upsample1D(nn.Module):
|
|||||||
|
|
||||||
|
|
||||||
class PreLookaheadLayer(nn.Module):
|
class PreLookaheadLayer(nn.Module):
|
||||||
def __init__(self, channels: int, pre_lookahead_len: int = 1):
|
def __init__(self, in_channels: int, channels: int, pre_lookahead_len: int = 1):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
self.in_channels = in_channels
|
||||||
self.channels = channels
|
self.channels = channels
|
||||||
self.pre_lookahead_len = pre_lookahead_len
|
self.pre_lookahead_len = pre_lookahead_len
|
||||||
self.conv1 = nn.Conv1d(
|
self.conv1 = nn.Conv1d(
|
||||||
channels, channels,
|
in_channels, channels,
|
||||||
kernel_size=pre_lookahead_len + 1,
|
kernel_size=pre_lookahead_len + 1,
|
||||||
stride=1, padding=0,
|
stride=1, padding=0,
|
||||||
)
|
)
|
||||||
self.conv2 = nn.Conv1d(
|
self.conv2 = nn.Conv1d(
|
||||||
channels, channels,
|
channels, in_channels,
|
||||||
kernel_size=3, stride=1, padding=0,
|
kernel_size=3, stride=1, padding=0,
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -199,7 +200,7 @@ class UpsampleConformerEncoder(torch.nn.Module):
|
|||||||
# convolution module definition
|
# convolution module definition
|
||||||
convolution_layer_args = (output_size, cnn_module_kernel, activation,
|
convolution_layer_args = (output_size, cnn_module_kernel, activation,
|
||||||
cnn_module_norm, causal)
|
cnn_module_norm, causal)
|
||||||
self.pre_lookahead_layer = PreLookaheadLayer(channels=512, pre_lookahead_len=3)
|
self.pre_lookahead_layer = PreLookaheadLayer(in_channels=512, channels=512, pre_lookahead_len=3)
|
||||||
self.encoders = torch.nn.ModuleList([
|
self.encoders = torch.nn.ModuleList([
|
||||||
ConformerEncoderLayer(
|
ConformerEncoderLayer(
|
||||||
output_size,
|
output_size,
|
||||||
|
|||||||
@@ -32,10 +32,10 @@ from cosyvoice.transformer.attention import (MultiHeadedAttention,
|
|||||||
RelPositionMultiHeadedAttention)
|
RelPositionMultiHeadedAttention)
|
||||||
from cosyvoice.transformer.embedding import EspnetRelPositionalEncoding
|
from cosyvoice.transformer.embedding import EspnetRelPositionalEncoding
|
||||||
from cosyvoice.transformer.subsampling import LegacyLinearNoSubsampling
|
from cosyvoice.transformer.subsampling import LegacyLinearNoSubsampling
|
||||||
from cosyvoice.llm.llm import TransformerLM, Qwen2LM
|
from cosyvoice.llm.llm import TransformerLM, Qwen2LM, CosyVoice3LM
|
||||||
from cosyvoice.flow.flow import MaskedDiffWithXvec, CausalMaskedDiffWithXvec
|
from cosyvoice.flow.flow import MaskedDiffWithXvec, CausalMaskedDiffWithXvec, CausalMaskedDiffWithDiT
|
||||||
from cosyvoice.hifigan.generator import HiFTGenerator
|
from cosyvoice.hifigan.generator import HiFTGenerator, CausalHiFTGenerator
|
||||||
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
|
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model, CosyVoice3Model
|
||||||
|
|
||||||
|
|
||||||
COSYVOICE_ACTIVATION_CLASSES = {
|
COSYVOICE_ACTIVATION_CLASSES = {
|
||||||
@@ -80,4 +80,6 @@ def get_model_type(configs):
|
|||||||
return CosyVoiceModel
|
return CosyVoiceModel
|
||||||
if isinstance(configs['llm'], Qwen2LM) and isinstance(configs['flow'], CausalMaskedDiffWithXvec) and isinstance(configs['hift'], HiFTGenerator):
|
if isinstance(configs['llm'], Qwen2LM) and isinstance(configs['flow'], CausalMaskedDiffWithXvec) and isinstance(configs['hift'], HiFTGenerator):
|
||||||
return CosyVoice2Model
|
return CosyVoice2Model
|
||||||
|
if isinstance(configs['llm'], CosyVoice3LM) and isinstance(configs['flow'], CausalMaskedDiffWithDiT) and isinstance(configs['hift'], CausalHiFTGenerator):
|
||||||
|
return CosyVoice3Model
|
||||||
raise TypeError('No valid model type found!')
|
raise TypeError('No valid model type found!')
|
||||||
|
|||||||
@@ -25,6 +25,33 @@ import torch
|
|||||||
|
|
||||||
IGNORE_ID = -1
|
IGNORE_ID = -1
|
||||||
|
|
||||||
|
instruct_list = ["You are a helpful assistant. 请用广东话表达。<|endofprompt|>",
|
||||||
|
"You are a helpful assistant. 请用东北话表达。<|endofprompt|>",
|
||||||
|
"You are a helpful assistant. 请用甘肃话表达。<|endofprompt|>",
|
||||||
|
"You are a helpful assistant. 请用贵州话表达。<|endofprompt|>",
|
||||||
|
"You are a helpful assistant. 请用河南话表达。<|endofprompt|>",
|
||||||
|
"You are a helpful assistant. 请用湖北话表达。<|endofprompt|>",
|
||||||
|
"You are a helpful assistant. 请用湖南话表达。<|endofprompt|>",
|
||||||
|
"You are a helpful assistant. 请用江西话表达。<|endofprompt|>",
|
||||||
|
"You are a helpful assistant. 请用闽南话表达。<|endofprompt|>",
|
||||||
|
"You are a helpful assistant. 请用宁夏话表达。<|endofprompt|>",
|
||||||
|
"You are a helpful assistant. 请用山西话表达。<|endofprompt|>",
|
||||||
|
"You are a helpful assistant. 请用陕西话表达。<|endofprompt|>",
|
||||||
|
"You are a helpful assistant. 请用山东话表达。<|endofprompt|>",
|
||||||
|
"You are a helpful assistant. 请用上海话表达。<|endofprompt|>",
|
||||||
|
"You are a helpful assistant. 请用四川话表达。<|endofprompt|>",
|
||||||
|
"You are a helpful assistant. 请用天津话表达。<|endofprompt|>",
|
||||||
|
"You are a helpful assistant. 请用云南话表达。<|endofprompt|>",
|
||||||
|
"You are a helpful assistant. Please say a sentence as loudly as possible.<|endofprompt|>",
|
||||||
|
"You are a helpful assistant. Please say a sentence in a very soft voice.<|endofprompt|>",
|
||||||
|
"You are a helpful assistant. 请用尽可能慢地语速说一句话。<|endofprompt|>",
|
||||||
|
"You are a helpful assistant. 请用尽可能快地语速说一句话。<|endofprompt|>",
|
||||||
|
"You are a helpful assistant. 请非常开心地说一句话。<|endofprompt|>",
|
||||||
|
"You are a helpful assistant. 请非常伤心地说一句话。<|endofprompt|>",
|
||||||
|
"You are a helpful assistant. 请非常生气地说一句话。<|endofprompt|>",
|
||||||
|
"You are a helpful assistant. 我想体验一下小猪佩奇风格,可以吗?<|endofprompt|>",
|
||||||
|
"You are a helpful assistant. 你可以尝试用机器人的方式解答吗?<|endofprompt|>"]
|
||||||
|
|
||||||
|
|
||||||
def pad_list(xs: List[torch.Tensor], pad_value: int):
|
def pad_list(xs: List[torch.Tensor], pad_value: int):
|
||||||
"""Perform padding for the list of tensors.
|
"""Perform padding for the list of tensors.
|
||||||
@@ -130,12 +157,12 @@ def nucleus_sampling(weighted_scores, top_p=0.8, top_k=25):
|
|||||||
break
|
break
|
||||||
prob = torch.tensor(prob).to(weighted_scores)
|
prob = torch.tensor(prob).to(weighted_scores)
|
||||||
indices = torch.tensor(indices, dtype=torch.long).to(weighted_scores.device)
|
indices = torch.tensor(indices, dtype=torch.long).to(weighted_scores.device)
|
||||||
top_ids = indices[prob.multinomial(1, replacement=True)]
|
top_ids = indices[prob.multinomial(1, replacement=True)].item()
|
||||||
return top_ids
|
return top_ids
|
||||||
|
|
||||||
|
|
||||||
def random_sampling(weighted_scores, decoded_tokens, sampling):
|
def random_sampling(weighted_scores, decoded_tokens, sampling):
|
||||||
top_ids = weighted_scores.softmax(dim=0).multinomial(1, replacement=True)
|
top_ids = weighted_scores.softmax(dim=0).multinomial(1, replacement=True).item()
|
||||||
return top_ids
|
return top_ids
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -41,11 +41,11 @@ def read_json_lists(list_file):
|
|||||||
return results
|
return results
|
||||||
|
|
||||||
|
|
||||||
def load_wav(wav, target_sr):
|
def load_wav(wav, target_sr, min_sr=16000):
|
||||||
speech, sample_rate = torchaudio.load(wav, backend='soundfile')
|
speech, sample_rate = torchaudio.load(wav, backend='soundfile')
|
||||||
speech = speech.mean(dim=0, keepdim=True)
|
speech = speech.mean(dim=0, keepdim=True)
|
||||||
if sample_rate != target_sr:
|
if sample_rate != target_sr:
|
||||||
assert sample_rate > target_sr, 'wav sample rate {} must be greater than {}'.format(sample_rate, target_sr)
|
assert sample_rate >= min_sr, 'wav sample rate {} must be greater than {}'.format(sample_rate, target_sr)
|
||||||
speech = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sr)(speech)
|
speech = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sr)(speech)
|
||||||
return speech
|
return speech
|
||||||
|
|
||||||
@@ -88,30 +88,18 @@ def convert_onnx_to_trt(trt_model, trt_kwargs, onnx_model, fp16):
|
|||||||
logging.info("Succesfully convert onnx to trt...")
|
logging.info("Succesfully convert onnx to trt...")
|
||||||
|
|
||||||
|
|
||||||
|
# NOTE do not support bistream inference as only speech token embedding/head is kept
|
||||||
def export_cosyvoice2_vllm(model, model_path, device):
|
def export_cosyvoice2_vllm(model, model_path, device):
|
||||||
if os.path.exists(model_path):
|
if os.path.exists(model_path):
|
||||||
return
|
return
|
||||||
pad_to = DEFAULT_VOCAB_PADDING_SIZE = 64
|
|
||||||
vocab_size = model.speech_embedding.num_embeddings
|
|
||||||
feature_size = model.speech_embedding.embedding_dim
|
|
||||||
pad_vocab_size = ((vocab_size + pad_to - 1) // pad_to) * pad_to
|
|
||||||
|
|
||||||
dtype = torch.bfloat16
|
dtype = torch.bfloat16
|
||||||
# lm_head
|
# lm_head
|
||||||
new_lm_head = torch.nn.Linear(in_features=feature_size, out_features=pad_vocab_size, bias=True)
|
use_bias = True if model.llm_decoder.bias is not None else False
|
||||||
with torch.no_grad():
|
model.llm.model.lm_head = model.llm_decoder
|
||||||
new_lm_head.weight[:vocab_size] = model.llm_decoder.weight
|
|
||||||
new_lm_head.bias[:vocab_size] = model.llm_decoder.bias
|
|
||||||
new_lm_head.weight[vocab_size:] = 0
|
|
||||||
new_lm_head.bias[vocab_size:] = 0
|
|
||||||
model.llm.model.lm_head = new_lm_head
|
|
||||||
new_codec_embed = torch.nn.Linear(in_features=feature_size, out_features=pad_vocab_size)
|
|
||||||
# embed_tokens
|
# embed_tokens
|
||||||
embed_tokens = model.llm.model.model.embed_tokens
|
embed_tokens = model.llm.model.model.embed_tokens
|
||||||
with torch.no_grad():
|
model.llm.model.set_input_embeddings(model.speech_embedding)
|
||||||
new_codec_embed.weight[:vocab_size] = model.speech_embedding.weight
|
|
||||||
new_codec_embed.weight[vocab_size:] = 0
|
|
||||||
model.llm.model.set_input_embeddings(new_codec_embed)
|
|
||||||
model.llm.model.to(device)
|
model.llm.model.to(device)
|
||||||
model.llm.model.to(dtype)
|
model.llm.model.to(dtype)
|
||||||
tmp_vocab_size = model.llm.model.config.vocab_size
|
tmp_vocab_size = model.llm.model.config.vocab_size
|
||||||
@@ -119,10 +107,11 @@ def export_cosyvoice2_vllm(model, model_path, device):
|
|||||||
del model.llm.model.generation_config.eos_token_id
|
del model.llm.model.generation_config.eos_token_id
|
||||||
del model.llm.model.config.bos_token_id
|
del model.llm.model.config.bos_token_id
|
||||||
del model.llm.model.config.eos_token_id
|
del model.llm.model.config.eos_token_id
|
||||||
model.llm.model.config.vocab_size = pad_vocab_size
|
model.llm.model.config.vocab_size = model.speech_embedding.num_embeddings
|
||||||
model.llm.model.config.tie_word_embeddings = False
|
model.llm.model.config.tie_word_embeddings = False
|
||||||
model.llm.model.config.use_bias = True
|
model.llm.model.config.use_bias = use_bias
|
||||||
model.llm.model.save_pretrained(model_path)
|
model.llm.model.save_pretrained(model_path)
|
||||||
|
if use_bias is True:
|
||||||
os.system('sed -i s@Qwen2ForCausalLM@CosyVoice2ForCausalLM@g {}/config.json'.format(os.path.abspath(model_path)))
|
os.system('sed -i s@Qwen2ForCausalLM@CosyVoice2ForCausalLM@g {}/config.json'.format(os.path.abspath(model_path)))
|
||||||
model.llm.model.config.vocab_size = tmp_vocab_size
|
model.llm.model.config.vocab_size = tmp_vocab_size
|
||||||
model.llm.model.config.tie_word_embeddings = tmp_tie_embedding
|
model.llm.model.config.tie_word_embeddings = tmp_tie_embedding
|
||||||
|
|||||||
@@ -53,7 +53,7 @@ def init_distributed(args):
|
|||||||
def init_dataset_and_dataloader(args, configs, gan, dpo):
|
def init_dataset_and_dataloader(args, configs, gan, dpo):
|
||||||
data_pipeline = configs['data_pipeline_gan'] if gan is True else configs['data_pipeline']
|
data_pipeline = configs['data_pipeline_gan'] if gan is True else configs['data_pipeline']
|
||||||
train_dataset = Dataset(args.train_data, data_pipeline=data_pipeline, mode='train', gan=gan, dpo=dpo, shuffle=True, partition=True)
|
train_dataset = Dataset(args.train_data, data_pipeline=data_pipeline, mode='train', gan=gan, dpo=dpo, shuffle=True, partition=True)
|
||||||
cv_dataset = Dataset(args.cv_data, data_pipeline=data_pipeline, mode='train', gan=gan, dpo=dpo, shuffle=False, partition=False)
|
cv_dataset = Dataset(args.cv_data, data_pipeline=data_pipeline, mode='dev', gan=gan, dpo=dpo, shuffle=False, partition=False)
|
||||||
|
|
||||||
# do not use persistent_workers=True, as whisper tokenizer opens tiktoken file each time when the for loop starts
|
# do not use persistent_workers=True, as whisper tokenizer opens tiktoken file each time when the for loop starts
|
||||||
train_data_loader = DataLoader(train_dataset,
|
train_data_loader = DataLoader(train_dataset,
|
||||||
@@ -164,18 +164,18 @@ def init_optimizer_and_scheduler(args, configs, model, gan):
|
|||||||
raise ValueError("unknown scheduler: " + configs['train_conf'])
|
raise ValueError("unknown scheduler: " + configs['train_conf'])
|
||||||
|
|
||||||
if configs['train_conf']['optim_d'] == 'adam':
|
if configs['train_conf']['optim_d'] == 'adam':
|
||||||
optimizer_d = optim.Adam(model.module.discriminator.parameters(), **configs['train_conf']['optim_conf'])
|
optimizer_d = optim.Adam(model.module.discriminator.parameters(), **configs['train_conf']['optim_conf_d'])
|
||||||
elif configs['train_conf']['optim_d'] == 'adamw':
|
elif configs['train_conf']['optim_d'] == 'adamw':
|
||||||
optimizer_d = optim.AdamW(model.module.discriminator.parameters(), **configs['train_conf']['optim_conf'])
|
optimizer_d = optim.AdamW(model.module.discriminator.parameters(), **configs['train_conf']['optim_conf_d'])
|
||||||
else:
|
else:
|
||||||
raise ValueError("unknown optimizer: " + configs['train_conf'])
|
raise ValueError("unknown optimizer: " + configs['train_conf'])
|
||||||
|
|
||||||
if configs['train_conf']['scheduler_d'] == 'warmuplr':
|
if configs['train_conf']['scheduler_d'] == 'warmuplr':
|
||||||
scheduler_type = WarmupLR
|
scheduler_type = WarmupLR
|
||||||
scheduler_d = WarmupLR(optimizer_d, **configs['train_conf']['scheduler_conf'])
|
scheduler_d = WarmupLR(optimizer_d, **configs['train_conf']['scheduler_d'])
|
||||||
elif configs['train_conf']['scheduler_d'] == 'NoamHoldAnnealing':
|
elif configs['train_conf']['scheduler_d'] == 'NoamHoldAnnealing':
|
||||||
scheduler_type = NoamHoldAnnealing
|
scheduler_type = NoamHoldAnnealing
|
||||||
scheduler_d = NoamHoldAnnealing(optimizer_d, **configs['train_conf']['scheduler_conf'])
|
scheduler_d = NoamHoldAnnealing(optimizer_d, **configs['train_conf']['scheduler_d'])
|
||||||
elif configs['train_conf']['scheduler'] == 'constantlr':
|
elif configs['train_conf']['scheduler'] == 'constantlr':
|
||||||
scheduler_type = ConstantLR
|
scheduler_type = ConstantLR
|
||||||
scheduler_d = ConstantLR(optimizer_d)
|
scheduler_d = ConstantLR(optimizer_d)
|
||||||
|
|||||||
@@ -4,7 +4,7 @@ ARG VENV_NAME="cosyvoice"
|
|||||||
ENV VENV=$VENV_NAME
|
ENV VENV=$VENV_NAME
|
||||||
ENV LANG=C.UTF-8 LC_ALL=C.UTF-8
|
ENV LANG=C.UTF-8 LC_ALL=C.UTF-8
|
||||||
|
|
||||||
ENV DEBIAN_FRONTEN=noninteractive
|
ENV DEBIAN_FRONTEND=noninteractive
|
||||||
ENV PYTHONUNBUFFERED=1
|
ENV PYTHONUNBUFFERED=1
|
||||||
SHELL ["/bin/bash", "--login", "-c"]
|
SHELL ["/bin/bash", "--login", "-c"]
|
||||||
|
|
||||||
|
|||||||
106
example.py
Normal file
106
example.py
Normal file
@@ -0,0 +1,106 @@
|
|||||||
|
import sys
|
||||||
|
sys.path.append('third_party/Matcha-TTS')
|
||||||
|
from cosyvoice.cli.cosyvoice import AutoModel
|
||||||
|
import torchaudio
|
||||||
|
|
||||||
|
|
||||||
|
def cosyvoice_example():
|
||||||
|
""" CosyVoice Usage, check https://fun-audio-llm.github.io/ for more details
|
||||||
|
"""
|
||||||
|
cosyvoice = AutoModel(model_dir='pretrained_models/CosyVoice-300M-SFT')
|
||||||
|
# sft usage
|
||||||
|
print(cosyvoice.list_available_spks())
|
||||||
|
# change stream=True for chunk stream inference
|
||||||
|
for i, j in enumerate(cosyvoice.inference_sft('你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?', '中文女', stream=False)):
|
||||||
|
torchaudio.save('sft_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||||
|
|
||||||
|
cosyvoice = AutoModel(model_dir='pretrained_models/CosyVoice-300M')
|
||||||
|
# zero_shot usage
|
||||||
|
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', './asset/zero_shot_prompt.wav')):
|
||||||
|
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||||
|
# cross_lingual usage, <|zh|><|en|><|ja|><|yue|><|ko|> for Chinese/English/Japanese/Cantonese/Korean
|
||||||
|
for i, j in enumerate(cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that\'s coming into the family is a reason why sometimes we don\'t buy the whole thing.',
|
||||||
|
'./asset/cross_lingual_prompt.wav')):
|
||||||
|
torchaudio.save('cross_lingual_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||||
|
# vc usage
|
||||||
|
for i, j in enumerate(cosyvoice.inference_vc('./asset/cross_lingual_prompt.wav', './asset/zero_shot_prompt.wav')):
|
||||||
|
torchaudio.save('vc_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||||
|
|
||||||
|
cosyvoice = AutoModel(model_dir='pretrained_models/CosyVoice-300M-Instruct')
|
||||||
|
# instruct usage, support <laughter></laughter><strong></strong>[laughter][breath]
|
||||||
|
for i, j in enumerate(cosyvoice.inference_instruct('在面对挑战时,他展现了非凡的<strong>勇气</strong>与<strong>智慧</strong>。', '中文男',
|
||||||
|
'Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.<|endofprompt|>')):
|
||||||
|
torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||||
|
|
||||||
|
|
||||||
|
def cosyvoice2_example():
|
||||||
|
""" CosyVoice2 Usage, check https://funaudiollm.github.io/cosyvoice2/ for more details
|
||||||
|
"""
|
||||||
|
cosyvoice = AutoModel(model_dir='pretrained_models/CosyVoice2-0.5B')
|
||||||
|
|
||||||
|
# NOTE if you want to reproduce the results on https://funaudiollm.github.io/cosyvoice2, please add text_frontend=False during inference
|
||||||
|
# zero_shot usage
|
||||||
|
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', './asset/zero_shot_prompt.wav')):
|
||||||
|
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||||
|
|
||||||
|
# save zero_shot spk for future usage
|
||||||
|
assert cosyvoice.add_zero_shot_spk('希望你以后能够做的比我还好呦。', './asset/zero_shot_prompt.wav', 'my_zero_shot_spk') is True
|
||||||
|
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '', '', zero_shot_spk_id='my_zero_shot_spk')):
|
||||||
|
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||||
|
cosyvoice.save_spkinfo()
|
||||||
|
|
||||||
|
# fine grained control, for supported control, check cosyvoice/tokenizer/tokenizer.py#L248
|
||||||
|
for i, j in enumerate(cosyvoice.inference_cross_lingual('在他讲述那个荒诞故事的过程中,他突然[laughter]停下来,因为他自己也被逗笑了[laughter]。', './asset/zero_shot_prompt.wav')):
|
||||||
|
torchaudio.save('fine_grained_control_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||||
|
|
||||||
|
# instruct usage
|
||||||
|
for i, j in enumerate(cosyvoice.inference_instruct2('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '用四川话说这句话<|endofprompt|>', './asset/zero_shot_prompt.wav')):
|
||||||
|
torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||||
|
|
||||||
|
# bistream usage, you can use generator as input, this is useful when using text llm model as input
|
||||||
|
# NOTE you should still have some basic sentence split logic because llm can not handle arbitrary sentence length
|
||||||
|
def text_generator():
|
||||||
|
yield '收到好友从远方寄来的生日礼物,'
|
||||||
|
yield '那份意外的惊喜与深深的祝福'
|
||||||
|
yield '让我心中充满了甜蜜的快乐,'
|
||||||
|
yield '笑容如花儿般绽放。'
|
||||||
|
for i, j in enumerate(cosyvoice.inference_zero_shot(text_generator(), '希望你以后能够做的比我还好呦。', './asset/zero_shot_prompt.wav', stream=False)):
|
||||||
|
torchaudio.save('zero_shot_bistream_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||||
|
|
||||||
|
|
||||||
|
def cosyvoice3_example():
|
||||||
|
""" CosyVoice3 Usage, check https://funaudiollm.github.io/cosyvoice3/ for more details
|
||||||
|
"""
|
||||||
|
cosyvoice = AutoModel(model_dir='pretrained_models/Fun-CosyVoice3-0.5B')
|
||||||
|
# zero_shot usage
|
||||||
|
for i, j in enumerate(cosyvoice.inference_zero_shot('八百标兵奔北坡,北坡炮兵并排跑,炮兵怕把标兵碰,标兵怕碰炮兵炮。', 'You are a helpful assistant.<|endofprompt|>希望你以后能够做的比我还好呦。',
|
||||||
|
'./asset/zero_shot_prompt.wav', stream=False)):
|
||||||
|
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||||
|
|
||||||
|
# fine grained control, for supported control, check cosyvoice/tokenizer/tokenizer.py#L280
|
||||||
|
for i, j in enumerate(cosyvoice.inference_cross_lingual('You are a helpful assistant.<|endofprompt|>[breath]因为他们那一辈人[breath]在乡里面住的要习惯一点,[breath]邻居都很活络,[breath]嗯,都很熟悉。[breath]',
|
||||||
|
'./asset/zero_shot_prompt.wav', stream=False)):
|
||||||
|
torchaudio.save('fine_grained_control_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||||
|
|
||||||
|
# instruct usage, for supported control, check cosyvoice/utils/common.py#L28
|
||||||
|
for i, j in enumerate(cosyvoice.inference_instruct2('好少咯,一般系放嗰啲国庆啊,中秋嗰啲可能会咯。', 'You are a helpful assistant. 请用广东话表达。<|endofprompt|>',
|
||||||
|
'./asset/zero_shot_prompt.wav', stream=False)):
|
||||||
|
torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||||
|
for i, j in enumerate(cosyvoice.inference_instruct2('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', 'You are a helpful assistant. 请用尽可能快地语速说一句话。<|endofprompt|>',
|
||||||
|
'./asset/zero_shot_prompt.wav', stream=False)):
|
||||||
|
torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||||
|
|
||||||
|
# hotfix usage
|
||||||
|
for i, j in enumerate(cosyvoice.inference_zero_shot('高管也通过电话、短信、微信等方式对报道[j][ǐ]予好评。', 'You are a helpful assistant.<|endofprompt|>希望你以后能够做的比我还好呦。',
|
||||||
|
'./asset/zero_shot_prompt.wav', stream=False)):
|
||||||
|
torchaudio.save('hotfix_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
# cosyvoice_example()
|
||||||
|
# cosyvoice2_example()
|
||||||
|
cosyvoice3_example()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
||||||
@@ -40,6 +40,10 @@ def main():
|
|||||||
with open('{}/spk2utt'.format(args.des_dir), 'w') as f:
|
with open('{}/spk2utt'.format(args.des_dir), 'w') as f:
|
||||||
for k, v in spk2utt.items():
|
for k, v in spk2utt.items():
|
||||||
f.write('{} {}\n'.format(k, ' '.join(v)))
|
f.write('{} {}\n'.format(k, ' '.join(v)))
|
||||||
|
if args.instruct != '':
|
||||||
|
with open('{}/instruct'.format(args.des_dir), 'w') as f:
|
||||||
|
for k, v in utt2text.items():
|
||||||
|
f.write('{} {}\n'.format(k, args.instruct))
|
||||||
return
|
return
|
||||||
|
|
||||||
|
|
||||||
@@ -49,7 +53,7 @@ if __name__ == "__main__":
|
|||||||
type=str)
|
type=str)
|
||||||
parser.add_argument('--des_dir',
|
parser.add_argument('--des_dir',
|
||||||
type=str)
|
type=str)
|
||||||
parser.add_argument('--ref_model',
|
parser.add_argument('--instruct',
|
||||||
type=str)
|
type=str)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
main()
|
main()
|
||||||
|
|||||||
@@ -66,7 +66,6 @@ if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
|||||||
fi
|
fi
|
||||||
cat data/{train-clean-100,train-clean-360,train-other-500}/parquet/data.list > data/train.data.list
|
cat data/{train-clean-100,train-clean-360,train-other-500}/parquet/data.list > data/train.data.list
|
||||||
cat data/{dev-clean,dev-other}/parquet/data.list > data/dev.data.list
|
cat data/{dev-clean,dev-other}/parquet/data.list > data/dev.data.list
|
||||||
# NOTE will update llm/hift training later
|
|
||||||
for model in llm flow hifigan; do
|
for model in llm flow hifigan; do
|
||||||
torchrun --nnodes=1 --nproc_per_node=$num_gpus \
|
torchrun --nnodes=1 --nproc_per_node=$num_gpus \
|
||||||
--rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:1234" \
|
--rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:1234" \
|
||||||
|
|||||||
224
examples/libritts/cosyvoice3/conf/cosyvoice3.yaml
Normal file
224
examples/libritts/cosyvoice3/conf/cosyvoice3.yaml
Normal file
@@ -0,0 +1,224 @@
|
|||||||
|
# set random seed, so that you may reproduce your result.
|
||||||
|
__set_seed1: !apply:random.seed [1986]
|
||||||
|
__set_seed2: !apply:numpy.random.seed [1986]
|
||||||
|
__set_seed3: !apply:torch.manual_seed [1986]
|
||||||
|
__set_seed4: !apply:torch.cuda.manual_seed_all [1986]
|
||||||
|
|
||||||
|
# fixed params
|
||||||
|
sample_rate: 24000
|
||||||
|
llm_input_size: 896
|
||||||
|
llm_output_size: 896
|
||||||
|
spk_embed_dim: 192
|
||||||
|
qwen_pretrain_path: ''
|
||||||
|
token_frame_rate: 25
|
||||||
|
token_mel_ratio: 2
|
||||||
|
|
||||||
|
# stream related params
|
||||||
|
chunk_size: 25 # streaming inference chunk size, in token
|
||||||
|
num_decoding_left_chunks: -1 # streaming inference flow decoder left chunk size, <0 means use all left chunks
|
||||||
|
|
||||||
|
# model params
|
||||||
|
# for all class/function included in this repo, we use !<name> or !<new> for intialization, so that user may find all corresponding class/function according to one single yaml.
|
||||||
|
# for system/third_party class/function, we do not require this.
|
||||||
|
llm: !new:cosyvoice.llm.llm.CosyVoice3LM
|
||||||
|
llm_input_size: !ref <llm_input_size>
|
||||||
|
llm_output_size: !ref <llm_output_size>
|
||||||
|
speech_token_size: 6561
|
||||||
|
length_normalized_loss: True
|
||||||
|
lsm_weight: 0
|
||||||
|
mix_ratio: [5, 15]
|
||||||
|
llm: !new:cosyvoice.llm.llm.Qwen2Encoder
|
||||||
|
pretrain_path: !ref <qwen_pretrain_path>
|
||||||
|
sampling: !name:cosyvoice.utils.common.ras_sampling
|
||||||
|
top_p: 0.8
|
||||||
|
top_k: 25
|
||||||
|
win_size: 10
|
||||||
|
tau_r: 0.1
|
||||||
|
|
||||||
|
flow: !new:cosyvoice.flow.flow.CausalMaskedDiffWithDiT
|
||||||
|
input_size: 80
|
||||||
|
output_size: 80
|
||||||
|
spk_embed_dim: !ref <spk_embed_dim>
|
||||||
|
output_type: 'mel'
|
||||||
|
vocab_size: 6561
|
||||||
|
input_frame_rate: !ref <token_frame_rate>
|
||||||
|
only_mask_loss: True
|
||||||
|
token_mel_ratio: !ref <token_mel_ratio>
|
||||||
|
pre_lookahead_len: 3
|
||||||
|
pre_lookahead_layer: !new:cosyvoice.transformer.upsample_encoder.PreLookaheadLayer
|
||||||
|
in_channels: 80
|
||||||
|
channels: 1024
|
||||||
|
pre_lookahead_len: 3
|
||||||
|
decoder: !new:cosyvoice.flow.flow_matching.CausalConditionalCFM
|
||||||
|
in_channels: 240
|
||||||
|
n_spks: 1
|
||||||
|
spk_emb_dim: 80
|
||||||
|
cfm_params: !new:omegaconf.DictConfig
|
||||||
|
content:
|
||||||
|
sigma_min: 1e-06
|
||||||
|
solver: 'euler'
|
||||||
|
t_scheduler: 'cosine'
|
||||||
|
training_cfg_rate: 0.2
|
||||||
|
inference_cfg_rate: 0.7
|
||||||
|
reg_loss_type: 'l1'
|
||||||
|
estimator: !new:cosyvoice.flow.DiT.dit.DiT
|
||||||
|
dim: 1024
|
||||||
|
depth: 22
|
||||||
|
heads: 16
|
||||||
|
dim_head: 64
|
||||||
|
ff_mult: 2
|
||||||
|
mel_dim: 80
|
||||||
|
mu_dim: 80
|
||||||
|
spk_dim: 80
|
||||||
|
out_channels: 80
|
||||||
|
static_chunk_size: !ref <chunk_size> * <token_mel_ratio>
|
||||||
|
num_decoding_left_chunks: !ref <num_decoding_left_chunks>
|
||||||
|
|
||||||
|
hift: !new:cosyvoice.hifigan.generator.CausalHiFTGenerator
|
||||||
|
in_channels: 80
|
||||||
|
base_channels: 512
|
||||||
|
nb_harmonics: 8
|
||||||
|
sampling_rate: !ref <sample_rate>
|
||||||
|
nsf_alpha: 0.1
|
||||||
|
nsf_sigma: 0.003
|
||||||
|
nsf_voiced_threshold: 10
|
||||||
|
upsample_rates: [8, 5, 3]
|
||||||
|
upsample_kernel_sizes: [16, 11, 7]
|
||||||
|
istft_params:
|
||||||
|
n_fft: 16
|
||||||
|
hop_len: 4
|
||||||
|
resblock_kernel_sizes: [3, 7, 11]
|
||||||
|
resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
|
||||||
|
source_resblock_kernel_sizes: [7, 7, 11]
|
||||||
|
source_resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
|
||||||
|
lrelu_slope: 0.1
|
||||||
|
audio_limit: 0.99
|
||||||
|
conv_pre_look_right: 4
|
||||||
|
f0_predictor: !new:cosyvoice.hifigan.f0_predictor.CausalConvRNNF0Predictor
|
||||||
|
num_class: 1
|
||||||
|
in_channels: 80
|
||||||
|
cond_channels: 512
|
||||||
|
|
||||||
|
# gan related module
|
||||||
|
mel_spec_transform1: !name:matcha.utils.audio.mel_spectrogram
|
||||||
|
n_fft: 1920
|
||||||
|
num_mels: 80
|
||||||
|
sampling_rate: !ref <sample_rate>
|
||||||
|
hop_size: 480
|
||||||
|
win_size: 1920
|
||||||
|
fmin: 0
|
||||||
|
fmax: null
|
||||||
|
center: False
|
||||||
|
hifigan: !new:cosyvoice.hifigan.hifigan.HiFiGan
|
||||||
|
generator: !ref <hift>
|
||||||
|
discriminator: !new:cosyvoice.hifigan.discriminator.MultipleDiscriminator
|
||||||
|
mpd: !new:matcha.hifigan.models.MultiPeriodDiscriminator
|
||||||
|
mrd: !new:cosyvoice.hifigan.discriminator.MultiResSpecDiscriminator
|
||||||
|
mel_spec_transform: [
|
||||||
|
!ref <mel_spec_transform1>
|
||||||
|
]
|
||||||
|
|
||||||
|
# processor functions
|
||||||
|
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
|
||||||
|
get_tokenizer: !name:cosyvoice.tokenizer.tokenizer.get_qwen_tokenizer
|
||||||
|
token_path: !ref <qwen_pretrain_path>
|
||||||
|
skip_special_tokens: True
|
||||||
|
version: cosyvoice3
|
||||||
|
allowed_special: 'all'
|
||||||
|
tokenize: !name:cosyvoice.dataset.processor.tokenize
|
||||||
|
get_tokenizer: !ref <get_tokenizer>
|
||||||
|
allowed_special: !ref <allowed_special>
|
||||||
|
filter: !name:cosyvoice.dataset.processor.filter
|
||||||
|
max_length: 40960
|
||||||
|
min_length: 100
|
||||||
|
token_max_length: 200
|
||||||
|
token_min_length: 1
|
||||||
|
resample: !name:cosyvoice.dataset.processor.resample
|
||||||
|
resample_rate: !ref <sample_rate>
|
||||||
|
truncate: !name:cosyvoice.dataset.processor.truncate
|
||||||
|
truncate_length: 24960 # must be a multiplier of hop_size and token_mel_ratio
|
||||||
|
feat_extractor: !name:matcha.utils.audio.mel_spectrogram
|
||||||
|
n_fft: 1920
|
||||||
|
num_mels: 80
|
||||||
|
sampling_rate: !ref <sample_rate>
|
||||||
|
hop_size: 480
|
||||||
|
win_size: 1920
|
||||||
|
fmin: 0
|
||||||
|
fmax: null
|
||||||
|
center: False
|
||||||
|
compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
|
||||||
|
feat_extractor: !ref <feat_extractor>
|
||||||
|
token_mel_ratio: 2
|
||||||
|
compute_f0: !name:cosyvoice.dataset.processor.compute_f0
|
||||||
|
sample_rate: !ref <sample_rate>
|
||||||
|
hop_size: 480
|
||||||
|
parse_embedding: !name:cosyvoice.dataset.processor.parse_embedding
|
||||||
|
normalize: True
|
||||||
|
shuffle: !name:cosyvoice.dataset.processor.shuffle
|
||||||
|
shuffle_size: 1000
|
||||||
|
sort: !name:cosyvoice.dataset.processor.sort
|
||||||
|
sort_size: 500 # sort_size should be less than shuffle_size
|
||||||
|
batch: !name:cosyvoice.dataset.processor.batch
|
||||||
|
batch_type: 'dynamic'
|
||||||
|
max_frames_in_batch: 2000
|
||||||
|
padding: !name:cosyvoice.dataset.processor.padding
|
||||||
|
use_spk_embedding: False # change to True during sft
|
||||||
|
|
||||||
|
|
||||||
|
# dataset processor pipeline
|
||||||
|
data_pipeline: [
|
||||||
|
!ref <parquet_opener>,
|
||||||
|
!ref <tokenize>,
|
||||||
|
!ref <filter>,
|
||||||
|
!ref <resample>,
|
||||||
|
!ref <compute_fbank>,
|
||||||
|
!ref <parse_embedding>,
|
||||||
|
!ref <shuffle>,
|
||||||
|
!ref <sort>,
|
||||||
|
!ref <batch>,
|
||||||
|
!ref <padding>,
|
||||||
|
]
|
||||||
|
data_pipeline_gan: [
|
||||||
|
!ref <parquet_opener>,
|
||||||
|
!ref <tokenize>,
|
||||||
|
!ref <filter>,
|
||||||
|
!ref <resample>,
|
||||||
|
!ref <truncate>,
|
||||||
|
!ref <compute_fbank>,
|
||||||
|
!ref <compute_f0>,
|
||||||
|
!ref <parse_embedding>,
|
||||||
|
!ref <shuffle>,
|
||||||
|
!ref <sort>,
|
||||||
|
!ref <batch>,
|
||||||
|
!ref <padding>,
|
||||||
|
]
|
||||||
|
|
||||||
|
# llm flow train conf
|
||||||
|
train_conf:
|
||||||
|
optim: adam
|
||||||
|
optim_conf:
|
||||||
|
lr: 1e-5 # change to 1e-5 during sft
|
||||||
|
scheduler: constantlr # change to constantlr during sft
|
||||||
|
scheduler_conf:
|
||||||
|
warmup_steps: 2500
|
||||||
|
max_epoch: 200
|
||||||
|
grad_clip: 5
|
||||||
|
accum_grad: 2
|
||||||
|
log_interval: 100
|
||||||
|
save_per_step: -1
|
||||||
|
|
||||||
|
# gan train conf
|
||||||
|
train_conf_gan:
|
||||||
|
optim: adam
|
||||||
|
optim_conf:
|
||||||
|
lr: 0.0002 # use small lr for gan training
|
||||||
|
scheduler: constantlr
|
||||||
|
optim_d: adam
|
||||||
|
optim_conf_d:
|
||||||
|
lr: 0.0002 # use small lr for gan training
|
||||||
|
scheduler_d: constantlr
|
||||||
|
max_epoch: 200
|
||||||
|
grad_clip: 5
|
||||||
|
accum_grad: 1 # in gan training, accum_grad must be 1
|
||||||
|
log_interval: 100
|
||||||
|
save_per_step: -1
|
||||||
42
examples/libritts/cosyvoice3/conf/ds_stage2.json
Normal file
42
examples/libritts/cosyvoice3/conf/ds_stage2.json
Normal file
@@ -0,0 +1,42 @@
|
|||||||
|
{
|
||||||
|
"train_micro_batch_size_per_gpu": 1,
|
||||||
|
"gradient_accumulation_steps": 1,
|
||||||
|
"steps_per_print": 100,
|
||||||
|
"gradient_clipping": 5,
|
||||||
|
"fp16": {
|
||||||
|
"enabled": false,
|
||||||
|
"auto_cast": false,
|
||||||
|
"loss_scale": 0,
|
||||||
|
"initial_scale_power": 16,
|
||||||
|
"loss_scale_window": 256,
|
||||||
|
"hysteresis": 2,
|
||||||
|
"consecutive_hysteresis": false,
|
||||||
|
"min_loss_scale": 1
|
||||||
|
},
|
||||||
|
"bf16": {
|
||||||
|
"enabled": false
|
||||||
|
},
|
||||||
|
"zero_force_ds_cpu_optimizer": false,
|
||||||
|
"zero_optimization": {
|
||||||
|
"stage": 2,
|
||||||
|
"offload_optimizer": {
|
||||||
|
"device": "none",
|
||||||
|
"pin_memory": true
|
||||||
|
},
|
||||||
|
"allgather_partitions": true,
|
||||||
|
"allgather_bucket_size": 5e8,
|
||||||
|
"overlap_comm": false,
|
||||||
|
"reduce_scatter": true,
|
||||||
|
"reduce_bucket_size": 5e8,
|
||||||
|
"contiguous_gradients" : true
|
||||||
|
},
|
||||||
|
"optimizer": {
|
||||||
|
"type": "AdamW",
|
||||||
|
"params": {
|
||||||
|
"lr": 0.001,
|
||||||
|
"weight_decay": 0.0001,
|
||||||
|
"torch_adam": true,
|
||||||
|
"adam_w_mode": true
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
1
examples/libritts/cosyvoice3/cosyvoice
Symbolic link
1
examples/libritts/cosyvoice3/cosyvoice
Symbolic link
@@ -0,0 +1 @@
|
|||||||
|
../../../cosyvoice
|
||||||
1
examples/libritts/cosyvoice3/local
Symbolic link
1
examples/libritts/cosyvoice3/local
Symbolic link
@@ -0,0 +1 @@
|
|||||||
|
../cosyvoice/local
|
||||||
1
examples/libritts/cosyvoice3/path.sh
Symbolic link
1
examples/libritts/cosyvoice3/path.sh
Symbolic link
@@ -0,0 +1 @@
|
|||||||
|
../cosyvoice/path.sh
|
||||||
112
examples/libritts/cosyvoice3/run.sh
Normal file
112
examples/libritts/cosyvoice3/run.sh
Normal file
@@ -0,0 +1,112 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# Copyright 2024 Alibaba Inc. All Rights Reserved.
|
||||||
|
. ./path.sh || exit 1;
|
||||||
|
|
||||||
|
stage=-1
|
||||||
|
stop_stage=3
|
||||||
|
|
||||||
|
data_url=www.openslr.org/resources/60
|
||||||
|
data_dir=/mnt/lyuxiang.lx/data/tts/openslr/libritts
|
||||||
|
pretrained_model_dir=../../../pretrained_models/Fun-CosyVoice3-0.5B
|
||||||
|
|
||||||
|
if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
|
||||||
|
echo "Data Download"
|
||||||
|
for part in dev-clean test-clean dev-other test-other train-clean-100 train-clean-360 train-other-500; do
|
||||||
|
local/download_and_untar.sh ${data_dir} ${data_url} ${part}
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
|
||||||
|
echo "Data preparation, prepare wav.scp/text/utt2spk/spk2utt"
|
||||||
|
for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
|
||||||
|
mkdir -p data/$x
|
||||||
|
# NOTE in CosyVoice3, we add instruct in sequence
|
||||||
|
python local/prepare_data.py --src_dir $data_dir/LibriTTS/$x --des_dir data/$x --instruct "You are a helpful assistant.<|endofprompt|>"
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
||||||
|
echo "Extract campplus speaker embedding, you will get spk2embedding.pt and utt2embedding.pt in data/$x dir"
|
||||||
|
for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
|
||||||
|
tools/extract_embedding.py --dir data/$x \
|
||||||
|
--onnx_path $pretrained_model_dir/campplus.onnx
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
||||||
|
echo "Extract discrete speech token, you will get utt2speech_token.pt in data/$x dir"
|
||||||
|
for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
|
||||||
|
tools/extract_speech_token.py --dir data/$x \
|
||||||
|
--onnx_path $pretrained_model_dir/speech_tokenizer_v3.onnx
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
||||||
|
echo "Prepare required parquet format data, you should have prepared wav.scp/text/utt2spk/spk2utt/utt2embedding.pt/spk2embedding.pt/utt2speech_token.pt"
|
||||||
|
for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
|
||||||
|
mkdir -p data/$x/parquet
|
||||||
|
tools/make_parquet_list.py --num_utts_per_parquet 1000 \
|
||||||
|
--num_processes 10 \
|
||||||
|
--instruct \
|
||||||
|
--src_dir data/$x \
|
||||||
|
--des_dir data/$x/parquet
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
# train llm
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||||
|
num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
|
||||||
|
job_id=1986
|
||||||
|
dist_backend="nccl"
|
||||||
|
num_workers=2
|
||||||
|
prefetch=100
|
||||||
|
train_engine=torch_ddp
|
||||||
|
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
||||||
|
echo "Run train. We only support llm traning for now"
|
||||||
|
if [ $train_engine == 'deepspeed' ]; then
|
||||||
|
echo "Notice deepspeed has its own optimizer config. Modify conf/ds_stage2.json if necessary"
|
||||||
|
fi
|
||||||
|
cat data/{train-clean-100,train-clean-360,train-other-500}/parquet/data.list > data/train.data.list
|
||||||
|
cat data/{dev-clean,dev-other}/parquet/data.list > data/dev.data.list
|
||||||
|
for model in llm flow hifigan; do
|
||||||
|
torchrun --nnodes=1 --nproc_per_node=$num_gpus \
|
||||||
|
--rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:1234" \
|
||||||
|
cosyvoice/bin/train.py \
|
||||||
|
--train_engine $train_engine \
|
||||||
|
--config conf/cosyvoice3.yaml \
|
||||||
|
--train_data data/train.data.list \
|
||||||
|
--cv_data data/dev.data.list \
|
||||||
|
--qwen_pretrain_path $pretrained_model_dir/CosyVoice-BlankEN \
|
||||||
|
--model $model \
|
||||||
|
--checkpoint $pretrained_model_dir/$model.pt \
|
||||||
|
--model_dir `pwd`/exp/cosyvoice3/$model/$train_engine \
|
||||||
|
--tensorboard_dir `pwd`/tensorboard/cosyvoice3/$model/$train_engine \
|
||||||
|
--ddp.dist_backend $dist_backend \
|
||||||
|
--num_workers ${num_workers} \
|
||||||
|
--prefetch ${prefetch} \
|
||||||
|
--pin_memory \
|
||||||
|
--use_amp \
|
||||||
|
--deepspeed_config ./conf/ds_stage2.json \
|
||||||
|
--deepspeed.save_states model+optimizer
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
# average model
|
||||||
|
average_num=5
|
||||||
|
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
|
||||||
|
for model in llm flow hifigan; do
|
||||||
|
decode_checkpoint=`pwd`/exp/cosyvoice/$model/$train_engine/${model}.pt
|
||||||
|
echo "do model average and final checkpoint is $decode_checkpoint"
|
||||||
|
python cosyvoice/bin/average_model.py \
|
||||||
|
--dst_model $decode_checkpoint \
|
||||||
|
--src_path `pwd`/exp/cosyvoice/$model/$train_engine \
|
||||||
|
--num ${average_num} \
|
||||||
|
--val_best
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then
|
||||||
|
echo "Export your model for inference speedup. Remember copy your llm or flow model to model_dir"
|
||||||
|
python cosyvoice/bin/export_jit.py --model_dir $pretrained_model_dir
|
||||||
|
python cosyvoice/bin/export_onnx.py --model_dir $pretrained_model_dir
|
||||||
|
fi
|
||||||
1
examples/libritts/cosyvoice3/tools
Symbolic link
1
examples/libritts/cosyvoice3/tools
Symbolic link
@@ -0,0 +1 @@
|
|||||||
|
../../../tools
|
||||||
@@ -17,6 +17,7 @@ lightning==2.2.4
|
|||||||
matplotlib==3.7.5
|
matplotlib==3.7.5
|
||||||
modelscope==1.20.0
|
modelscope==1.20.0
|
||||||
networkx==3.1
|
networkx==3.1
|
||||||
|
numpy==1.26.4
|
||||||
omegaconf==2.3.0
|
omegaconf==2.3.0
|
||||||
onnx==1.16.0
|
onnx==1.16.0
|
||||||
onnxruntime-gpu==1.18.0; sys_platform == 'linux'
|
onnxruntime-gpu==1.18.0; sys_platform == 'linux'
|
||||||
@@ -29,12 +30,13 @@ pyworld==0.3.4
|
|||||||
rich==13.7.1
|
rich==13.7.1
|
||||||
soundfile==0.12.1
|
soundfile==0.12.1
|
||||||
tensorboard==2.14.0
|
tensorboard==2.14.0
|
||||||
tensorrt-cu12==10.0.1; sys_platform == 'linux'
|
tensorrt-cu12==10.13.3.9; sys_platform == 'linux'
|
||||||
tensorrt-cu12-bindings==10.0.1; sys_platform == 'linux'
|
tensorrt-cu12-bindings==10.13.3.9; sys_platform == 'linux'
|
||||||
tensorrt-cu12-libs==10.0.1; sys_platform == 'linux'
|
tensorrt-cu12-libs==10.13.3.9; sys_platform == 'linux'
|
||||||
torch==2.3.1
|
torch==2.3.1
|
||||||
torchaudio==2.3.1
|
torchaudio==2.3.1
|
||||||
transformers==4.51.3
|
transformers==4.51.3
|
||||||
|
x-transformers==2.11.24
|
||||||
uvicorn==0.30.0
|
uvicorn==0.30.0
|
||||||
wetext==0.0.4
|
wetext==0.0.4
|
||||||
wget==3.2
|
wget==3.2
|
||||||
|
|||||||
@@ -24,7 +24,7 @@ import numpy as np
|
|||||||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||||
sys.path.append('{}/../../..'.format(ROOT_DIR))
|
sys.path.append('{}/../../..'.format(ROOT_DIR))
|
||||||
sys.path.append('{}/../../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
sys.path.append('{}/../../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
||||||
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
from cosyvoice.cli.cosyvoice import AutoModel
|
||||||
from cosyvoice.utils.file_utils import load_wav
|
from cosyvoice.utils.file_utils import load_wav
|
||||||
|
|
||||||
app = FastAPI()
|
app = FastAPI()
|
||||||
@@ -88,14 +88,8 @@ if __name__ == '__main__':
|
|||||||
default=50000)
|
default=50000)
|
||||||
parser.add_argument('--model_dir',
|
parser.add_argument('--model_dir',
|
||||||
type=str,
|
type=str,
|
||||||
default='iic/CosyVoice-300M',
|
default='iic/CosyVoice2-0.5B',
|
||||||
help='local path or modelscope repo id')
|
help='local path or modelscope repo id')
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
try:
|
cosyvoice = AutoModel(model_dir=args.model_dir)
|
||||||
cosyvoice = CosyVoice(args.model_dir)
|
|
||||||
except Exception:
|
|
||||||
try:
|
|
||||||
cosyvoice = CosyVoice2(args.model_dir)
|
|
||||||
except Exception:
|
|
||||||
raise TypeError('no valid model_type!')
|
|
||||||
uvicorn.run(app, host="0.0.0.0", port=args.port)
|
uvicorn.run(app, host="0.0.0.0", port=args.port)
|
||||||
|
|||||||
@@ -25,7 +25,7 @@ import numpy as np
|
|||||||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||||
sys.path.append('{}/../../..'.format(ROOT_DIR))
|
sys.path.append('{}/../../..'.format(ROOT_DIR))
|
||||||
sys.path.append('{}/../../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
sys.path.append('{}/../../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
||||||
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
from cosyvoice.cli.cosyvoice import AutoModel
|
||||||
|
|
||||||
logging.basicConfig(level=logging.DEBUG,
|
logging.basicConfig(level=logging.DEBUG,
|
||||||
format='%(asctime)s %(levelname)s %(message)s')
|
format='%(asctime)s %(levelname)s %(message)s')
|
||||||
@@ -33,13 +33,7 @@ logging.basicConfig(level=logging.DEBUG,
|
|||||||
|
|
||||||
class CosyVoiceServiceImpl(cosyvoice_pb2_grpc.CosyVoiceServicer):
|
class CosyVoiceServiceImpl(cosyvoice_pb2_grpc.CosyVoiceServicer):
|
||||||
def __init__(self, args):
|
def __init__(self, args):
|
||||||
try:
|
self.cosyvoice = AutoModel(model_dir=args.model_dir)
|
||||||
self.cosyvoice = CosyVoice(args.model_dir, trt_concurrent=args.max_conc)
|
|
||||||
except Exception:
|
|
||||||
try:
|
|
||||||
self.cosyvoice = CosyVoice2(args.model_dir, trt_concurrent=args.max_conc)
|
|
||||||
except Exception:
|
|
||||||
raise TypeError('no valid model_type!')
|
|
||||||
logging.info('grpc service initialized')
|
logging.info('grpc service initialized')
|
||||||
|
|
||||||
def Inference(self, request, context):
|
def Inference(self, request, context):
|
||||||
@@ -90,7 +84,7 @@ if __name__ == '__main__':
|
|||||||
default=4)
|
default=4)
|
||||||
parser.add_argument('--model_dir',
|
parser.add_argument('--model_dir',
|
||||||
type=str,
|
type=str,
|
||||||
default='iic/CosyVoice-300M',
|
default='iic/CosyVoice2-0.5B',
|
||||||
help='local path or modelscope repo id')
|
help='local path or modelscope repo id')
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
main()
|
main()
|
||||||
|
|||||||
@@ -28,6 +28,7 @@ import json
|
|||||||
import os
|
import os
|
||||||
import threading
|
import threading
|
||||||
import time
|
import time
|
||||||
|
from uuid import uuid4
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
@@ -364,6 +365,7 @@ class TritonPythonModel:
|
|||||||
# Generate semantic tokens with LLM
|
# Generate semantic tokens with LLM
|
||||||
generated_ids_iter = self.forward_llm(input_ids)
|
generated_ids_iter = self.forward_llm(input_ids)
|
||||||
|
|
||||||
|
token2wav_request_id = request_id or str(uuid4())
|
||||||
if self.decoupled:
|
if self.decoupled:
|
||||||
response_sender = request.get_response_sender()
|
response_sender = request.get_response_sender()
|
||||||
|
|
||||||
@@ -392,7 +394,7 @@ class TritonPythonModel:
|
|||||||
this_tts_speech_token = torch.tensor(this_tts_speech_token).unsqueeze(dim=0).to(torch.int32).to(self.device)
|
this_tts_speech_token = torch.tensor(this_tts_speech_token).unsqueeze(dim=0).to(torch.int32).to(self.device)
|
||||||
|
|
||||||
sub_tts_speech = self.forward_token2wav(
|
sub_tts_speech = self.forward_token2wav(
|
||||||
this_tts_speech_token, request_id, prompt_speech_tokens,
|
this_tts_speech_token, token2wav_request_id, prompt_speech_tokens,
|
||||||
prompt_speech_feat, prompt_spk_embedding, token_offset, False
|
prompt_speech_feat, prompt_spk_embedding, token_offset, False
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -427,7 +429,7 @@ class TritonPythonModel:
|
|||||||
time.sleep(0.02)
|
time.sleep(0.02)
|
||||||
|
|
||||||
this_tts_speech_token = torch.tensor(semantic_token_ids_arr).unsqueeze(dim=0).to(torch.int32).to(self.device)
|
this_tts_speech_token = torch.tensor(semantic_token_ids_arr).unsqueeze(dim=0).to(torch.int32).to(self.device)
|
||||||
sub_tts_speech = self.forward_token2wav(this_tts_speech_token, request_id, prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding, token_offset, True)
|
sub_tts_speech = self.forward_token2wav(this_tts_speech_token, token2wav_request_id, prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding, token_offset, True)
|
||||||
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech))
|
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech))
|
||||||
inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
|
inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
|
||||||
response_sender.send(inference_response)
|
response_sender.send(inference_response)
|
||||||
@@ -441,7 +443,7 @@ class TritonPythonModel:
|
|||||||
if generated_ids is None or len(generated_ids) == 0:
|
if generated_ids is None or len(generated_ids) == 0:
|
||||||
raise pb_utils.TritonModelException("Generated IDs is None or empty")
|
raise pb_utils.TritonModelException("Generated IDs is None or empty")
|
||||||
|
|
||||||
audio = self.forward_token2wav(generated_ids, request_id, prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding)
|
audio = self.forward_token2wav(generated_ids, token2wav_request_id, prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding)
|
||||||
|
|
||||||
# Prepare response
|
# Prepare response
|
||||||
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(audio))
|
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(audio))
|
||||||
|
|||||||
@@ -37,6 +37,8 @@ def job(utt_list, parquet_file, utt2parquet_file, spk2parquet_file):
|
|||||||
speech_token_list = [utt2speech_token.get(utt, []) for utt in utt_list]
|
speech_token_list = [utt2speech_token.get(utt, []) for utt in utt_list]
|
||||||
if args.dpo:
|
if args.dpo:
|
||||||
reject_speech_token_list = [utt2reject_speech_token[utt] for utt in utt_list]
|
reject_speech_token_list = [utt2reject_speech_token[utt] for utt in utt_list]
|
||||||
|
if args.instruct:
|
||||||
|
instruct_list = [utt2instruct[utt] for utt in utt_list]
|
||||||
|
|
||||||
# 保存到parquet,utt2parquet_file,spk2parquet_file
|
# 保存到parquet,utt2parquet_file,spk2parquet_file
|
||||||
df = pd.DataFrame()
|
df = pd.DataFrame()
|
||||||
@@ -50,6 +52,8 @@ def job(utt_list, parquet_file, utt2parquet_file, spk2parquet_file):
|
|||||||
df['speech_token'] = speech_token_list
|
df['speech_token'] = speech_token_list
|
||||||
if args.dpo:
|
if args.dpo:
|
||||||
df['reject_speech_token'] = reject_speech_token_list
|
df['reject_speech_token'] = reject_speech_token_list
|
||||||
|
if args.instruct:
|
||||||
|
df['instruct'] = instruct_list
|
||||||
df.to_parquet(parquet_file)
|
df.to_parquet(parquet_file)
|
||||||
with open(utt2parquet_file, 'w') as f:
|
with open(utt2parquet_file, 'w') as f:
|
||||||
json.dump({k: parquet_file for k in utt_list}, f, ensure_ascii=False, indent=2)
|
json.dump({k: parquet_file for k in utt_list}, f, ensure_ascii=False, indent=2)
|
||||||
@@ -68,6 +72,10 @@ if __name__ == "__main__":
|
|||||||
type=int,
|
type=int,
|
||||||
default=1,
|
default=1,
|
||||||
help='num processes for make parquets')
|
help='num processes for make parquets')
|
||||||
|
parser.add_argument('--instruct',
|
||||||
|
action='store_true',
|
||||||
|
default=False,
|
||||||
|
help='has instruct file or not')
|
||||||
parser.add_argument('--src_dir',
|
parser.add_argument('--src_dir',
|
||||||
type=str)
|
type=str)
|
||||||
parser.add_argument('--des_dir',
|
parser.add_argument('--des_dir',
|
||||||
@@ -78,7 +86,7 @@ if __name__ == "__main__":
|
|||||||
help='Use Direct Preference Optimization')
|
help='Use Direct Preference Optimization')
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
utt2wav, utt2text, utt2spk = {}, {}, {}
|
utt2wav, utt2text, utt2spk, utt2instruct = {}, {}, {}, {}
|
||||||
with open('{}/wav.scp'.format(args.src_dir)) as f:
|
with open('{}/wav.scp'.format(args.src_dir)) as f:
|
||||||
for l in f:
|
for l in f:
|
||||||
l = l.replace('\n', '').split()
|
l = l.replace('\n', '').split()
|
||||||
@@ -91,6 +99,11 @@ if __name__ == "__main__":
|
|||||||
for l in f:
|
for l in f:
|
||||||
l = l.replace('\n', '').split()
|
l = l.replace('\n', '').split()
|
||||||
utt2spk[l[0]] = l[1]
|
utt2spk[l[0]] = l[1]
|
||||||
|
if args.instruct is True:
|
||||||
|
with open('{}/instruct'.format(args.src_dir)) as f:
|
||||||
|
for l in f:
|
||||||
|
l = l.replace('\n', '').split()
|
||||||
|
utt2instruct[l[0]] = ' '.join(l[1:])
|
||||||
utt2embedding = torch.load('{}/utt2embedding.pt'.format(args.src_dir))
|
utt2embedding = torch.load('{}/utt2embedding.pt'.format(args.src_dir))
|
||||||
spk2embedding = torch.load('{}/spk2embedding.pt'.format(args.src_dir))
|
spk2embedding = torch.load('{}/spk2embedding.pt'.format(args.src_dir))
|
||||||
utt2speech_token = torch.load('{}/utt2speech_token.pt'.format(args.src_dir))
|
utt2speech_token = torch.load('{}/utt2speech_token.pt'.format(args.src_dir))
|
||||||
|
|||||||
@@ -4,20 +4,36 @@ from vllm import ModelRegistry
|
|||||||
from cosyvoice.vllm.cosyvoice2 import CosyVoice2ForCausalLM
|
from cosyvoice.vllm.cosyvoice2 import CosyVoice2ForCausalLM
|
||||||
ModelRegistry.register_model("CosyVoice2ForCausalLM", CosyVoice2ForCausalLM)
|
ModelRegistry.register_model("CosyVoice2ForCausalLM", CosyVoice2ForCausalLM)
|
||||||
|
|
||||||
from cosyvoice.cli.cosyvoice import CosyVoice2
|
from cosyvoice.cli.cosyvoice import AutoModel
|
||||||
from cosyvoice.utils.file_utils import load_wav
|
|
||||||
from cosyvoice.utils.common import set_all_random_seed
|
from cosyvoice.utils.common import set_all_random_seed
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def cosyvoice2_example():
|
||||||
cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=True, load_trt=True, load_vllm=True, fp16=True)
|
""" CosyVoice2 vllm usage
|
||||||
prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)
|
"""
|
||||||
|
cosyvoice = AutoModel(model_dir='pretrained_models/CosyVoice2-0.5B', load_jit=True, load_trt=True, load_vllm=True, fp16=True)
|
||||||
for i in tqdm(range(100)):
|
for i in tqdm(range(100)):
|
||||||
set_all_random_seed(i)
|
set_all_random_seed(i)
|
||||||
for _, _ in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
|
for _, _ in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', './asset/zero_shot_prompt.wav', stream=False)):
|
||||||
continue
|
continue
|
||||||
|
|
||||||
|
|
||||||
|
def cosyvoice3_example():
|
||||||
|
""" CosyVoice3 vllm usage
|
||||||
|
"""
|
||||||
|
cosyvoice = AutoModel(model_dir='pretrained_models/Fun-CosyVoice3-0.5B', load_trt=True, load_vllm=True, fp16=False)
|
||||||
|
for i in tqdm(range(100)):
|
||||||
|
set_all_random_seed(i)
|
||||||
|
for _, _ in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', 'You are a helpful assistant.<|endofprompt|>希望你以后能够做的比我还好呦。',
|
||||||
|
'./asset/zero_shot_prompt.wav', stream=False)):
|
||||||
|
continue
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
# cosyvoice2_example()
|
||||||
|
cosyvoice3_example()
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
main()
|
main()
|
||||||
|
|||||||
36
webui.py
36
webui.py
@@ -22,8 +22,8 @@ import random
|
|||||||
import librosa
|
import librosa
|
||||||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||||
sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR))
|
sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR))
|
||||||
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
from cosyvoice.cli.cosyvoice import AutoModel
|
||||||
from cosyvoice.utils.file_utils import load_wav, logging
|
from cosyvoice.utils.file_utils import logging
|
||||||
from cosyvoice.utils.common import set_all_random_seed
|
from cosyvoice.utils.common import set_all_random_seed
|
||||||
|
|
||||||
inference_mode_list = ['预训练音色', '3s极速复刻', '跨语种复刻', '自然语言控制']
|
inference_mode_list = ['预训练音色', '3s极速复刻', '跨语种复刻', '自然语言控制']
|
||||||
@@ -43,18 +43,6 @@ def generate_seed():
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
def postprocess(speech, top_db=60, hop_length=220, win_length=440):
|
|
||||||
speech, _ = librosa.effects.trim(
|
|
||||||
speech, top_db=top_db,
|
|
||||||
frame_length=win_length,
|
|
||||||
hop_length=hop_length
|
|
||||||
)
|
|
||||||
if speech.abs().max() > max_val:
|
|
||||||
speech = speech / speech.abs().max() * max_val
|
|
||||||
speech = torch.concat([speech, torch.zeros(1, int(cosyvoice.sample_rate * 0.2))], dim=1)
|
|
||||||
return speech
|
|
||||||
|
|
||||||
|
|
||||||
def change_instruction(mode_checkbox_group):
|
def change_instruction(mode_checkbox_group):
|
||||||
return instruct_dict[mode_checkbox_group]
|
return instruct_dict[mode_checkbox_group]
|
||||||
|
|
||||||
@@ -69,9 +57,6 @@ def generate_audio(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, pro
|
|||||||
prompt_wav = None
|
prompt_wav = None
|
||||||
# if instruct mode, please make sure that model is iic/CosyVoice-300M-Instruct and not cross_lingual mode
|
# if instruct mode, please make sure that model is iic/CosyVoice-300M-Instruct and not cross_lingual mode
|
||||||
if mode_checkbox_group in ['自然语言控制']:
|
if mode_checkbox_group in ['自然语言控制']:
|
||||||
if cosyvoice.instruct is False:
|
|
||||||
gr.Warning('您正在使用自然语言控制模式, {}模型不支持此模式, 请使用iic/CosyVoice-300M-Instruct模型'.format(args.model_dir))
|
|
||||||
yield (cosyvoice.sample_rate, default_data)
|
|
||||||
if instruct_text == '':
|
if instruct_text == '':
|
||||||
gr.Warning('您正在使用自然语言控制模式, 请输入instruct文本')
|
gr.Warning('您正在使用自然语言控制模式, 请输入instruct文本')
|
||||||
yield (cosyvoice.sample_rate, default_data)
|
yield (cosyvoice.sample_rate, default_data)
|
||||||
@@ -79,9 +64,6 @@ def generate_audio(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, pro
|
|||||||
gr.Info('您正在使用自然语言控制模式, prompt音频/prompt文本会被忽略')
|
gr.Info('您正在使用自然语言控制模式, prompt音频/prompt文本会被忽略')
|
||||||
# if cross_lingual mode, please make sure that model is iic/CosyVoice-300M and tts_text prompt_text are different language
|
# if cross_lingual mode, please make sure that model is iic/CosyVoice-300M and tts_text prompt_text are different language
|
||||||
if mode_checkbox_group in ['跨语种复刻']:
|
if mode_checkbox_group in ['跨语种复刻']:
|
||||||
if cosyvoice.instruct is True:
|
|
||||||
gr.Warning('您正在使用跨语种复刻模式, {}模型不支持此模式, 请使用iic/CosyVoice-300M模型'.format(args.model_dir))
|
|
||||||
yield (cosyvoice.sample_rate, default_data)
|
|
||||||
if instruct_text != '':
|
if instruct_text != '':
|
||||||
gr.Info('您正在使用跨语种复刻模式, instruct文本会被忽略')
|
gr.Info('您正在使用跨语种复刻模式, instruct文本会被忽略')
|
||||||
if prompt_wav is None:
|
if prompt_wav is None:
|
||||||
@@ -118,15 +100,13 @@ def generate_audio(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, pro
|
|||||||
yield (cosyvoice.sample_rate, i['tts_speech'].numpy().flatten())
|
yield (cosyvoice.sample_rate, i['tts_speech'].numpy().flatten())
|
||||||
elif mode_checkbox_group == '3s极速复刻':
|
elif mode_checkbox_group == '3s极速复刻':
|
||||||
logging.info('get zero_shot inference request')
|
logging.info('get zero_shot inference request')
|
||||||
prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
|
|
||||||
set_all_random_seed(seed)
|
set_all_random_seed(seed)
|
||||||
for i in cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k, stream=stream, speed=speed):
|
for i in cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_wav, stream=stream, speed=speed):
|
||||||
yield (cosyvoice.sample_rate, i['tts_speech'].numpy().flatten())
|
yield (cosyvoice.sample_rate, i['tts_speech'].numpy().flatten())
|
||||||
elif mode_checkbox_group == '跨语种复刻':
|
elif mode_checkbox_group == '跨语种复刻':
|
||||||
logging.info('get cross_lingual inference request')
|
logging.info('get cross_lingual inference request')
|
||||||
prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
|
|
||||||
set_all_random_seed(seed)
|
set_all_random_seed(seed)
|
||||||
for i in cosyvoice.inference_cross_lingual(tts_text, prompt_speech_16k, stream=stream, speed=speed):
|
for i in cosyvoice.inference_cross_lingual(tts_text, prompt_wav, stream=stream, speed=speed):
|
||||||
yield (cosyvoice.sample_rate, i['tts_speech'].numpy().flatten())
|
yield (cosyvoice.sample_rate, i['tts_speech'].numpy().flatten())
|
||||||
else:
|
else:
|
||||||
logging.info('get instruct inference request')
|
logging.info('get instruct inference request')
|
||||||
@@ -184,13 +164,7 @@ if __name__ == '__main__':
|
|||||||
default='pretrained_models/CosyVoice2-0.5B',
|
default='pretrained_models/CosyVoice2-0.5B',
|
||||||
help='local path or modelscope repo id')
|
help='local path or modelscope repo id')
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
try:
|
cosyvoice = AutoModel(model_dir=args.model_dir)
|
||||||
cosyvoice = CosyVoice(args.model_dir)
|
|
||||||
except Exception:
|
|
||||||
try:
|
|
||||||
cosyvoice = CosyVoice2(args.model_dir)
|
|
||||||
except Exception:
|
|
||||||
raise TypeError('no valid model_type!')
|
|
||||||
|
|
||||||
sft_spk = cosyvoice.list_available_spks()
|
sft_spk = cosyvoice.list_available_spks()
|
||||||
if len(sft_spk) == 0:
|
if len(sft_spk) == 0:
|
||||||
|
|||||||
Reference in New Issue
Block a user