mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 09:29:25 +08:00
Merge branch 'main' into main
This commit is contained in:
173
README.md
173
README.md
@@ -1,54 +1,52 @@
|
||||
[](https://github.com/Akshay090/svg-banners)
|
||||

|
||||
|
||||
## 👉🏻 CosyVoice 👈🏻
|
||||
|
||||
**CosyVoice 3.0**: [Demos](https://funaudiollm.github.io/cosyvoice3/); [Paper](https://arxiv.org/abs/2505.17589); [CV3-Eval](https://github.com/FunAudioLLM/CV3-Eval)
|
||||
**Fun-CosyVoice 3.0**: [Demos](https://funaudiollm.github.io/cosyvoice3/); [Paper](https://arxiv.org/pdf/2505.17589); [Modelscope](https://www.modelscope.cn/models/FunAudioLLM/Fun-CosyVoice3-0.5B-2512); [Huggingface](https://huggingface.co/FunAudioLLM/Fun-CosyVoice3-0.5B-2512); [CV3-Eval](https://github.com/FunAudioLLM/CV3-Eval)
|
||||
|
||||
**CosyVoice 2.0**: [Demos](https://funaudiollm.github.io/cosyvoice2/); [Paper](https://arxiv.org/abs/2412.10117); [Modelscope](https://www.modelscope.cn/studios/iic/CosyVoice2-0.5B); [HuggingFace](https://huggingface.co/spaces/FunAudioLLM/CosyVoice2-0.5B)
|
||||
**CosyVoice 2.0**: [Demos](https://funaudiollm.github.io/cosyvoice2/); [Paper](https://arxiv.org/pdf/2412.10117); [Modelscope](https://www.modelscope.cn/models/iic/CosyVoice2-0.5B); [HuggingFace](https://huggingface.co/FunAudioLLM/CosyVoice2-0.5B)
|
||||
|
||||
**CosyVoice 1.0**: [Demos](https://fun-audio-llm.github.io); [Paper](https://funaudiollm.github.io/pdf/CosyVoice_v1.pdf); [Modelscope](https://www.modelscope.cn/studios/iic/CosyVoice-300M)
|
||||
**CosyVoice 1.0**: [Demos](https://fun-audio-llm.github.io); [Paper](https://funaudiollm.github.io/pdf/CosyVoice_v1.pdf); [Modelscope](https://www.modelscope.cn/models/iic/CosyVoice-300M); [HuggingFace](https://huggingface.co/FunAudioLLM/CosyVoice-300M)
|
||||
|
||||
## Highlight🔥
|
||||
|
||||
**CosyVoice 2.0** has been released! Compared to version 1.0, the new version offers more accurate, more stable, faster, and better speech generation capabilities.
|
||||
### Multilingual
|
||||
- **Supported Language**: Chinese, English, Japanese, Korean, Chinese dialects (Cantonese, Sichuanese, Shanghainese, Tianjinese, Wuhanese, etc.)
|
||||
- **Crosslingual & Mixlingual**:Support zero-shot voice cloning for cross-lingual and code-switching scenarios.
|
||||
### Ultra-Low Latency
|
||||
- **Bidirectional Streaming Support**: CosyVoice 2.0 integrates offline and streaming modeling technologies.
|
||||
- **Rapid First Packet Synthesis**: Achieves latency as low as 150ms while maintaining high-quality audio output.
|
||||
### High Accuracy
|
||||
- **Improved Pronunciation**: Reduces pronunciation errors by 30% to 50% compared to CosyVoice 1.0.
|
||||
- **Benchmark Achievements**: Attains the lowest character error rate on the hard test set of the Seed-TTS evaluation set.
|
||||
### Strong Stability
|
||||
- **Consistency in Timbre**: Ensures reliable voice consistency for zero-shot and cross-language speech synthesis.
|
||||
- **Cross-language Synthesis**: Marked improvements compared to version 1.0.
|
||||
### Natural Experience
|
||||
- **Enhanced Prosody and Sound Quality**: Improved alignment of synthesized audio, raising MOS evaluation scores from 5.4 to 5.53.
|
||||
- **Emotional and Dialectal Flexibility**: Now supports more granular emotional controls and accent adjustments.
|
||||
**Fun-CosyVoice 3.0** is an advanced text-to-speech (TTS) system based on large language models (LLM), surpassing its predecessor (CosyVoice 2.0) in content consistency, speaker similarity, and prosody naturalness. It is designed for zero-shot multilingual speech synthesis in the wild.
|
||||
### Key Features
|
||||
- **Language Coverage**: Covers 9 common languages (Chinese, English, Japanese, Korean, German, Spanish, French, Italian, Russian), 18+ Chinese dialects/accents (Guangdong, Minnan, Sichuan, Dongbei, Shan3xi, Shan1xi, Shanghai, Tianjin, Shandong, Ningxia, Gansu, etc.) and meanwhile supports both multi-lingual/cross-lingual zero-shot voice cloning.
|
||||
- **Content Consistency & Naturalness**: Achieves state-of-the-art performance in content consistency, speaker similarity, and prosody naturalness.
|
||||
- **Pronunciation Inpainting**: Supports pronunciation inpainting of Chinese Pinyin and English CMU phonemes, providing more controllability and thus suitable for production use.
|
||||
- **Text Normalization**: Supports reading of numbers, special symbols and various text formats without a traditional frontend module.
|
||||
- **Bi-Streaming**: Support both text-in streaming and audio-out streaming, and achieves latency as low as 150ms while maintaining high-quality audio output.
|
||||
- **Instruct Support**: Supports various instructions such as languages, dialects, emotions, speed, volume, etc.
|
||||
|
||||
|
||||
## Roadmap
|
||||
|
||||
- [x] 2025/12
|
||||
|
||||
- [x] release Fun-CosyVoice3-0.5B-2512 base model, rl model and its training/inference script
|
||||
- [x] release Fun-CosyVoice3-0.5B modelscope gradio space
|
||||
|
||||
- [x] 2025/08
|
||||
|
||||
- [x] Thanks to the contribution from NVIDIA Yuekai Zhang, add triton trtllm runtime support and cosyvoice2 grpo training support
|
||||
|
||||
- [x] 2025/07
|
||||
|
||||
- [x] release cosyvoice 3.0 eval set
|
||||
- [x] release Fun-CosyVoice 3.0 eval set
|
||||
|
||||
- [x] 2025/05
|
||||
|
||||
- [x] add cosyvoice 2.0 vllm support
|
||||
- [x] add CosyVoice2-0.5B vllm support
|
||||
|
||||
- [x] 2024/12
|
||||
|
||||
- [x] 25hz cosyvoice 2.0 released
|
||||
- [x] 25hz CosyVoice2-0.5B released
|
||||
|
||||
- [x] 2024/09
|
||||
|
||||
- [x] 25hz cosyvoice base model
|
||||
- [x] 25hz cosyvoice voice conversion model
|
||||
- [x] 25hz CosyVoice-300M base model
|
||||
- [x] 25hz CosyVoice-300M voice conversion function
|
||||
|
||||
- [x] 2024/08
|
||||
|
||||
@@ -61,6 +59,27 @@
|
||||
- [x] WeTextProcessing support when ttsfrd is not available
|
||||
- [x] Fastapi server and client
|
||||
|
||||
## Evaluation
|
||||
|
||||
| Model | Open-Source | Model Size | test-zh<br>CER (%) ↓ | test-zh<br>Speaker Similarity (%) ↑ | test-en<br>WER (%) ↓ | test-en<br>Speaker Similarity (%) ↑ | test-hard<br>CER (%) ↓ | test-hard<br>Speaker Similarity (%) ↑ |
|
||||
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|
||||
| Human | - | - | 1.26 | 75.5 | 2.14 | 73.4 | - | - |
|
||||
| Seed-TTS | ❌ | - | 1.12 | 79.6 | 2.25 | 76.2 | 7.59 | 77.6 |
|
||||
| MiniMax-Speech | ❌ | - | 0.83 | 78.3 | 1.65 | 69.2 | - | - |
|
||||
| F5-TTS | ✅ | 0.3B | 1.52 | 74.1 | 2.00 | 64.7 | 8.67 | 71.3 |
|
||||
| Spark TTS | ✅ | 0.5B | 1.2 | 66.0 | 1.98 | 57.3 | - | - |
|
||||
| CosyVoice2 | ✅ | 0.5B | 1.45 | 75.7 | 2.57 | 65.9 | 6.83 | 72.4 |
|
||||
| FireRedTTS2 | ✅ | 1.5B | 1.14 | 73.2 | 1.95 | 66.5 | - | - |
|
||||
| Index-TTS2 | ✅ | 1.5B | 1.03 | 76.5 | 2.23 | 70.6 | 7.12 | 75.5 |
|
||||
| VibeVoice-1.5B | ✅ | 1.5B | 1.16 | 74.4 | 3.04 | 68.9 | - | - |
|
||||
| VibeVoice-Realtime | ✅ | 0.5B | - | - | 2.05 | 63.3 | - | - |
|
||||
| HiggsAudio-v2 | ✅ | 3B | 1.50 | 74.0 | 2.44 | 67.7 | - | - |
|
||||
| VoxCPM | ✅ | 0.5B | 0.93 | 77.2 | 1.85 | 72.9 | 8.87 | 73.0 |
|
||||
| GLM-TTS | ✅ | 1.5B | 1.03 | 76.1 | - | - | - | - |
|
||||
| GLM-TTS RL | ✅ | 1.5B | 0.89 | 76.4 | - | - | - | - |
|
||||
| Fun-CosyVoice3-0.5B-2512 | ✅ | 0.5B | 1.21 | 78.0 | 2.24 | 71.8 | 6.71 | 75.8 |
|
||||
| Fun-CosyVoice3-0.5B-2512_RL | ✅ | 0.5B | 0.81 | 77.4 | 1.68 | 69.5 | 5.44 | 75.0 |
|
||||
|
||||
|
||||
## Install
|
||||
|
||||
@@ -91,26 +110,26 @@
|
||||
|
||||
### Model download
|
||||
|
||||
We strongly recommend that you download our pretrained `CosyVoice2-0.5B` `CosyVoice-300M` `CosyVoice-300M-SFT` `CosyVoice-300M-Instruct` model and `CosyVoice-ttsfrd` resource.
|
||||
We strongly recommend that you download our pretrained `Fun-CosyVoice3-0.5B` `CosyVoice2-0.5B` `CosyVoice-300M` `CosyVoice-300M-SFT` `CosyVoice-300M-Instruct` model and `CosyVoice-ttsfrd` resource.
|
||||
|
||||
``` python
|
||||
# SDK模型下载
|
||||
# modelscope SDK model download
|
||||
from modelscope import snapshot_download
|
||||
snapshot_download('FunAudioLLM/Fun-CosyVoice3-0.5B-2512', local_dir='pretrained_models/Fun-CosyVoice3-0.5B')
|
||||
snapshot_download('iic/CosyVoice2-0.5B', local_dir='pretrained_models/CosyVoice2-0.5B')
|
||||
snapshot_download('iic/CosyVoice-300M', local_dir='pretrained_models/CosyVoice-300M')
|
||||
snapshot_download('iic/CosyVoice-300M-SFT', local_dir='pretrained_models/CosyVoice-300M-SFT')
|
||||
snapshot_download('iic/CosyVoice-300M-Instruct', local_dir='pretrained_models/CosyVoice-300M-Instruct')
|
||||
snapshot_download('iic/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice-ttsfrd')
|
||||
```
|
||||
|
||||
``` sh
|
||||
# git模型下载,请确保已安装git lfs
|
||||
mkdir -p pretrained_models
|
||||
git clone https://www.modelscope.cn/iic/CosyVoice2-0.5B.git pretrained_models/CosyVoice2-0.5B
|
||||
git clone https://www.modelscope.cn/iic/CosyVoice-300M.git pretrained_models/CosyVoice-300M
|
||||
git clone https://www.modelscope.cn/iic/CosyVoice-300M-SFT.git pretrained_models/CosyVoice-300M-SFT
|
||||
git clone https://www.modelscope.cn/iic/CosyVoice-300M-Instruct.git pretrained_models/CosyVoice-300M-Instruct
|
||||
git clone https://www.modelscope.cn/iic/CosyVoice-ttsfrd.git pretrained_models/CosyVoice-ttsfrd
|
||||
# for oversea users, huggingface SDK model download
|
||||
from huggingface_hub import snapshot_download
|
||||
snapshot_download('FunAudioLLM/Fun-CosyVoice3-0.5B-2512', local_dir='pretrained_models/Fun-CosyVoice3-0.5B')
|
||||
snapshot_download('FunAudioLLM/CosyVoice2-0.5B', local_dir='pretrained_models/CosyVoice2-0.5B')
|
||||
snapshot_download('FunAudioLLM/CosyVoice-300M', local_dir='pretrained_models/CosyVoice-300M')
|
||||
snapshot_download('FunAudioLLM/CosyVoice-300M-SFT', local_dir='pretrained_models/CosyVoice-300M-SFT')
|
||||
snapshot_download('FunAudioLLM/CosyVoice-300M-Instruct', local_dir='pretrained_models/CosyVoice-300M-Instruct')
|
||||
snapshot_download('FunAudioLLM/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice-ttsfrd')
|
||||
```
|
||||
|
||||
Optionally, you can unzip `ttsfrd` resource and install `ttsfrd` package for better text normalization performance.
|
||||
@@ -126,50 +145,10 @@ pip install ttsfrd-0.4.2-cp310-cp310-linux_x86_64.whl
|
||||
|
||||
### Basic Usage
|
||||
|
||||
We strongly recommend using `CosyVoice2-0.5B` for better performance.
|
||||
Follow the code below for detailed usage of each model.
|
||||
|
||||
``` python
|
||||
import sys
|
||||
sys.path.append('third_party/Matcha-TTS')
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
||||
from cosyvoice.utils.file_utils import load_wav
|
||||
import torchaudio
|
||||
```
|
||||
|
||||
#### CosyVoice2 Usage
|
||||
```python
|
||||
cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=False, load_trt=False, load_vllm=False, fp16=False)
|
||||
|
||||
# NOTE if you want to reproduce the results on https://funaudiollm.github.io/cosyvoice2, please add text_frontend=False during inference
|
||||
# zero_shot usage
|
||||
prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)
|
||||
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
|
||||
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||
|
||||
# save zero_shot spk for future usage
|
||||
assert cosyvoice.add_zero_shot_spk('希望你以后能够做的比我还好呦。', prompt_speech_16k, 'my_zero_shot_spk') is True
|
||||
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '', '', zero_shot_spk_id='my_zero_shot_spk', stream=False)):
|
||||
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||
cosyvoice.save_spkinfo()
|
||||
|
||||
# fine grained control, for supported control, check cosyvoice/tokenizer/tokenizer.py#L248
|
||||
for i, j in enumerate(cosyvoice.inference_cross_lingual('在他讲述那个荒诞故事的过程中,他突然[laughter]停下来,因为他自己也被逗笑了[laughter]。', prompt_speech_16k, stream=False)):
|
||||
torchaudio.save('fine_grained_control_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||
|
||||
# instruct usage
|
||||
for i, j in enumerate(cosyvoice.inference_instruct2('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '用四川话说这句话', prompt_speech_16k, stream=False)):
|
||||
torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||
|
||||
# bistream usage, you can use generator as input, this is useful when using text llm model as input
|
||||
# NOTE you should still have some basic sentence split logic because llm can not handle arbitrary sentence length
|
||||
def text_generator():
|
||||
yield '收到好友从远方寄来的生日礼物,'
|
||||
yield '那份意外的惊喜与深深的祝福'
|
||||
yield '让我心中充满了甜蜜的快乐,'
|
||||
yield '笑容如花儿般绽放。'
|
||||
for i, j in enumerate(cosyvoice.inference_zero_shot(text_generator(), '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
|
||||
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||
We strongly recommend using `Fun-CosyVoice3-0.5B` for better performance.
|
||||
Follow the code in `example.py` for detailed usage of each model.
|
||||
```sh
|
||||
python example.py
|
||||
```
|
||||
|
||||
#### CosyVoice2 vllm Usage
|
||||
@@ -182,42 +161,12 @@ Notice that `vllm==v0.9.0` has a lot of specific requirements, for example `torc
|
||||
conda create -n cosyvoice_vllm --clone cosyvoice
|
||||
conda activate cosyvoice_vllm
|
||||
# for vllm==0.9.0
|
||||
pip install vllm==v0.9.0 transformers==4.51.3 -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
|
||||
pip install vllm==v0.9.0 transformers==4.51.3 numpy==1.26.4 -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
|
||||
# for vllm>=0.11.0
|
||||
pip install vllm==v0.11.0 transformers==4.57.1 -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
|
||||
pip install vllm==v0.11.0 transformers==4.57.1 numpy==1.26.4 -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
|
||||
python vllm_example.py
|
||||
```
|
||||
|
||||
#### CosyVoice Usage
|
||||
```python
|
||||
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-SFT', load_jit=False, load_trt=False, fp16=False)
|
||||
# sft usage
|
||||
print(cosyvoice.list_available_spks())
|
||||
# change stream=True for chunk stream inference
|
||||
for i, j in enumerate(cosyvoice.inference_sft('你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?', '中文女', stream=False)):
|
||||
torchaudio.save('sft_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||
|
||||
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M')
|
||||
# zero_shot usage, <|zh|><|en|><|jp|><|yue|><|ko|> for Chinese/English/Japanese/Cantonese/Korean
|
||||
prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)
|
||||
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
|
||||
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||
# cross_lingual usage
|
||||
prompt_speech_16k = load_wav('./asset/cross_lingual_prompt.wav', 16000)
|
||||
for i, j in enumerate(cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that\'s coming into the family is a reason why sometimes we don\'t buy the whole thing.', prompt_speech_16k, stream=False)):
|
||||
torchaudio.save('cross_lingual_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||
# vc usage
|
||||
prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)
|
||||
source_speech_16k = load_wav('./asset/cross_lingual_prompt.wav', 16000)
|
||||
for i, j in enumerate(cosyvoice.inference_vc(source_speech_16k, prompt_speech_16k, stream=False)):
|
||||
torchaudio.save('vc_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||
|
||||
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-Instruct')
|
||||
# instruct usage, support <laughter></laughter><strong></strong>[laughter][breath]
|
||||
for i, j in enumerate(cosyvoice.inference_instruct('在面对挑战时,他展现了非凡的<strong>勇气</strong>与<strong>智慧</strong>。', '中文男', 'Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.', stream=False)):
|
||||
torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||
```
|
||||
|
||||
#### Start web demo
|
||||
|
||||
You can use our web demo page to get familiar with CosyVoice quickly.
|
||||
|
||||
Reference in New Issue
Block a user