diff --git a/.gitignore b/.gitignore
index 139a40f..12b53ef 100644
--- a/.gitignore
+++ b/.gitignore
@@ -43,6 +43,8 @@ compile_commands.json
# train/inference files
*.wav
+*.m4a
+*.aac
*.pt
pretrained_models/*
*_pb2_grpc.py
diff --git a/README.md b/README.md
index 4c4fe34..2309696 100644
--- a/README.md
+++ b/README.md
@@ -86,23 +86,24 @@ import torchaudio
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-SFT')
# sft usage
print(cosyvoice.list_avaliable_spks())
-output = cosyvoice.inference_sft('你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?', '中文女')
-torchaudio.save('sft.wav', output['tts_speech'], 22050)
+# change stream=True for chunk stream inference
+for i, j in enumerate(cosyvoice.inference_sft('你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?', '中文女', stream=False)):
+ torchaudio.save('sft_{}.wav'.format(i), j['tts_speech'], 22050)
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M')
# zero_shot usage, <|zh|><|en|><|jp|><|yue|><|ko|> for Chinese/English/Japanese/Cantonese/Korean
prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)
-output = cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k)
-torchaudio.save('zero_shot.wav', output['tts_speech'], 22050)
+for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
+ torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], 22050)
# cross_lingual usage
prompt_speech_16k = load_wav('cross_lingual_prompt.wav', 16000)
-output = cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that\'s coming into the family is a reason why sometimes we don\'t buy the whole thing.', prompt_speech_16k)
-torchaudio.save('cross_lingual.wav', output['tts_speech'], 22050)
+for i, j in enumerate(cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that\'s coming into the family is a reason why sometimes we don\'t buy the whole thing.', prompt_speech_16k, stream=False)):
+ torchaudio.save('cross_lingual_{}.wav'.format(i), j['tts_speech'], 22050)
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-Instruct')
# instruct usage, support [laughter][breath]
-output = cosyvoice.inference_instruct('在面对挑战时,他展现了非凡的勇气与智慧。', '中文男', 'Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.')
-torchaudio.save('instruct.wav', output['tts_speech'], 22050)
+for i, j in enumerate(cosyvoice.inference_instruct('在面对挑战时,他展现了非凡的勇气与智慧。', '中文男', 'Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.', stream=False)):
+ torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], 22050)
```
**Start web demo**
@@ -133,10 +134,10 @@ docker build -t cosyvoice:v1.0 .
# change iic/CosyVoice-300M to iic/CosyVoice-300M-Instruct if you want to use instruct inference
# for grpc usage
docker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c "cd /opt/CosyVoice/CosyVoice/runtime/python/grpc && python3 server.py --port 50000 --max_conc 4 --model_dir iic/CosyVoice-300M && sleep infinity"
-python3 grpc/client.py --port 50000 --mode
+cd grpc && python3 client.py --port 50000 --mode
# for fastapi usage
docker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c "cd /opt/CosyVoice/CosyVoice/runtime/python/fastapi && MODEL_DIR=iic/CosyVoice-300M fastapi dev --port 50000 server.py && sleep infinity"
-python3 fastapi/client.py --port 50000 --mode
+cd fastapi && python3 client.py --port 50000 --mode
```
## Discussion & Communication
diff --git a/cosyvoice/bin/inference.py b/cosyvoice/bin/inference.py
index 6b777fa..d00d67b 100644
--- a/cosyvoice/bin/inference.py
+++ b/cosyvoice/bin/inference.py
@@ -100,10 +100,13 @@ def main():
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
'llm_embedding': utt_embedding, 'flow_embedding': utt_embedding}
- model_output = model.inference(**model_input)
+ tts_speeches = []
+ for model_output in model.inference(**model_input):
+ tts_speeches.append(model_output['tts_speech'])
+ tts_speeches = torch.concat(tts_speeches, dim=1)
tts_key = '{}_{}'.format(utts[0], tts_index[0])
tts_fn = os.path.join(args.result_dir, '{}.wav'.format(tts_key))
- torchaudio.save(tts_fn, model_output['tts_speech'], sample_rate=22050)
+ torchaudio.save(tts_fn, tts_speeches, sample_rate=22050)
f.write('{} {}\n'.format(tts_key, tts_fn))
f.flush()
f.close()
diff --git a/cosyvoice/cli/cosyvoice.py b/cosyvoice/cli/cosyvoice.py
index e2601eb..68a2b9f 100644
--- a/cosyvoice/cli/cosyvoice.py
+++ b/cosyvoice/cli/cosyvoice.py
@@ -49,6 +49,7 @@ class CosyVoice:
for i in self.frontend.text_normalize(tts_text, split=True):
model_input = self.frontend.frontend_sft(i, spk_id)
start_time = time.time()
+ logging.info('synthesis text {}'.format(i))
for model_output in self.model.inference(**model_input, stream=stream):
speech_len = model_output['tts_speech'].shape[1] / 22050
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
@@ -60,6 +61,7 @@ class CosyVoice:
for i in self.frontend.text_normalize(tts_text, split=True):
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k)
start_time = time.time()
+ logging.info('synthesis text {}'.format(i))
for model_output in self.model.inference(**model_input, stream=stream):
speech_len = model_output['tts_speech'].shape[1] / 22050
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
@@ -72,6 +74,7 @@ class CosyVoice:
for i in self.frontend.text_normalize(tts_text, split=True):
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k)
start_time = time.time()
+ logging.info('synthesis text {}'.format(i))
for model_output in self.model.inference(**model_input, stream=stream):
speech_len = model_output['tts_speech'].shape[1] / 22050
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
@@ -85,6 +88,7 @@ class CosyVoice:
for i in self.frontend.text_normalize(tts_text, split=True):
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
start_time = time.time()
+ logging.info('synthesis text {}'.format(i))
for model_output in self.model.inference(**model_input, stream=stream):
speech_len = model_output['tts_speech'].shape[1] / 22050
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
diff --git a/cosyvoice/cli/model.py b/cosyvoice/cli/model.py
index 7fb61ed..863736e 100644
--- a/cosyvoice/cli/model.py
+++ b/cosyvoice/cli/model.py
@@ -16,6 +16,8 @@ import numpy as np
import threading
import time
from contextlib import nullcontext
+import uuid
+from cosyvoice.utils.common import fade_in_out
class CosyVoiceModel:
@@ -28,13 +30,19 @@ class CosyVoiceModel:
self.llm = llm
self.flow = flow
self.hift = hift
- self.stream_win_len = 60 * 4
- self.stream_hop_len = 50 * 4
- self.overlap = 4395 * 4 # 10 token equals 4395 sample point
- self.window = np.hamming(2 * self.overlap)
+ self.token_min_hop_len = 100
+ self.token_max_hop_len = 400
+ self.token_overlap_len = 20
+ self.speech_overlap_len = 34 * 256
+ self.window = np.hamming(2 * self.speech_overlap_len)
+ self.stream_scale_factor = 1
+ assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf'
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
self.flow_hift_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
self.lock = threading.Lock()
+ # dict used to store session related variable
+ self.tts_speech_token = {}
+ self.llm_end = {}
def load(self, llm_model, flow_model, hift_model):
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device))
@@ -44,7 +52,7 @@ class CosyVoiceModel:
self.hift.load_state_dict(torch.load(hift_model, map_location=self.device))
self.hift.to(self.device).eval()
- def llm_job(self, text, text_len, prompt_text, prompt_text_len, llm_prompt_speech_token, llm_prompt_speech_token_len, llm_embedding):
+ def llm_job(self, text, text_len, prompt_text, prompt_text_len, llm_prompt_speech_token, llm_prompt_speech_token_len, llm_embedding, this_uuid):
with self.llm_context:
for i in self.llm.inference(text=text.to(self.device),
text_len=text_len.to(self.device),
@@ -53,13 +61,11 @@ class CosyVoiceModel:
prompt_speech_token=llm_prompt_speech_token.to(self.device),
prompt_speech_token_len=llm_prompt_speech_token_len.to(self.device),
embedding=llm_embedding.to(self.device),
- beam_size=1,
sampling=25,
max_token_text_ratio=30,
- min_token_text_ratio=3,
- stream=True):
- self.tts_speech_token.append(i)
- self.llm_end = True
+ min_token_text_ratio=3):
+ self.tts_speech_token[this_uuid].append(i)
+ self.llm_end[this_uuid] = True
def token2wav(self, token, prompt_token, prompt_token_len, prompt_feat, prompt_feat_len, embedding):
with self.flow_hift_context:
@@ -78,15 +84,19 @@ class CosyVoiceModel:
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), llm_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), flow_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
prompt_speech_feat=torch.zeros(1, 0, 80), prompt_speech_feat_len=torch.zeros(1, dtype=torch.int32), stream=False):
+ # this_uuid is used to track variables related to this inference thread
+ this_uuid = str(uuid.uuid1())
+ with self.lock:
+ self.tts_speech_token[this_uuid], self.llm_end[this_uuid] = [], False
+ p = threading.Thread(target=self.llm_job, args=(text.to(self.device), text_len.to(self.device), prompt_text.to(self.device), prompt_text_len.to(self.device),
+ llm_prompt_speech_token.to(self.device), llm_prompt_speech_token_len.to(self.device), llm_embedding.to(self.device), this_uuid))
+ p.start()
if stream is True:
- self.tts_speech_token, self.llm_end, cache_speech = [], False, None
- p = threading.Thread(target=self.llm_job, args=(text.to(self.device), text_len.to(self.device), prompt_text.to(self.device), prompt_text_len.to(self.device),
- llm_prompt_speech_token.to(self.device), llm_prompt_speech_token_len.to(self.device), llm_embedding.to(self.device)))
- p.start()
+ cache_speech, cache_token, token_hop_len = None, None, self.token_min_hop_len
while True:
time.sleep(0.1)
- if len(self.tts_speech_token) >= self.stream_win_len:
- this_tts_speech_token = torch.concat(self.tts_speech_token[:self.stream_win_len], dim=1)
+ if len(self.tts_speech_token[this_uuid]) >= token_hop_len + self.token_overlap_len:
+ this_tts_speech_token = torch.concat(self.tts_speech_token[this_uuid][:token_hop_len + self.token_overlap_len], dim=1)
with self.flow_hift_context:
this_tts_speech = self.token2wav(token=this_tts_speech_token,
prompt_token=flow_prompt_speech_token.to(self.device),
@@ -96,57 +106,48 @@ class CosyVoiceModel:
embedding=flow_embedding.to(self.device))
# fade in/out if necessary
if cache_speech is not None:
- this_tts_speech[:, :self.overlap] = this_tts_speech[:, :self.overlap] * self.window[:self.overlap] + cache_speech * self.window[-self.overlap:]
- yield {'tts_speech': this_tts_speech[:, :-self.overlap]}
- cache_speech = this_tts_speech[:, -self.overlap:]
+ this_tts_speech = fade_in_out(this_tts_speech, cache_speech, self.window)
+ yield {'tts_speech': this_tts_speech[:, :-self.speech_overlap_len]}
+ cache_speech = this_tts_speech[:, -self.speech_overlap_len:]
+ cache_token = self.tts_speech_token[this_uuid][:token_hop_len]
with self.lock:
- self.tts_speech_token = self.tts_speech_token[self.stream_hop_len:]
- if self.llm_end is True:
+ self.tts_speech_token[this_uuid] = self.tts_speech_token[this_uuid][token_hop_len:]
+ # increase token_hop_len for better speech quality
+ token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
+ if self.llm_end[this_uuid] is True and len(self.tts_speech_token[this_uuid]) < token_hop_len + self.token_overlap_len:
break
- # deal with remain tokens
- if cache_speech is None or len(self.tts_speech_token) > self.stream_win_len - self.stream_hop_len:
- this_tts_speech_token = torch.concat(self.tts_speech_token, dim=1)
- with self.flow_hift_context:
- this_tts_mel = self.flow.inference(token=this_tts_speech_token,
- token_len=torch.tensor([this_tts_speech_token.size(1)], dtype=torch.int32).to(self.device),
- prompt_token=flow_prompt_speech_token.to(self.device),
- prompt_token_len=flow_prompt_speech_token_len.to(self.device),
- prompt_feat=prompt_speech_feat.to(self.device),
- prompt_feat_len=prompt_speech_feat_len.to(self.device),
- embedding=flow_embedding.to(self.device))
- this_tts_speech = self.hift.inference(mel=this_tts_mel).cpu()
- if cache_speech is not None:
- this_tts_speech[:, :self.overlap] = this_tts_speech[:, :self.overlap] * self.window[:self.overlap] + cache_speech * self.window[-self.overlap:]
- yield {'tts_speech': this_tts_speech}
- else:
- assert len(self.tts_speech_token) == self.stream_win_len - self.stream_hop_len, 'tts_speech_token not equal to {}'.format(self.stream_win_len - self.stream_hop_len)
- yield {'tts_speech': cache_speech}
p.join()
- torch.cuda.synchronize()
+ # deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
+ this_tts_speech_token = torch.concat(self.tts_speech_token[this_uuid], dim=1)
+ if this_tts_speech_token.shape[1] < self.token_min_hop_len + self.token_overlap_len and cache_token is not None:
+ cache_token_len = self.token_min_hop_len + self.token_overlap_len - this_tts_speech_token.shape[1]
+ this_tts_speech_token = torch.concat([torch.concat(cache_token[-cache_token_len:], dim=1), this_tts_speech_token], dim=1)
+ else:
+ cache_token_len = 0
+ with self.flow_hift_context:
+ this_tts_speech = self.token2wav(token=this_tts_speech_token,
+ prompt_token=flow_prompt_speech_token.to(self.device),
+ prompt_token_len=flow_prompt_speech_token_len.to(self.device),
+ prompt_feat=prompt_speech_feat.to(self.device),
+ prompt_feat_len=prompt_speech_feat_len.to(self.device),
+ embedding=flow_embedding.to(self.device))
+ this_tts_speech = this_tts_speech[:, int(cache_token_len / this_tts_speech_token.shape[1] * this_tts_speech.shape[1]):]
+ if cache_speech is not None:
+ this_tts_speech = fade_in_out(this_tts_speech, cache_speech, self.window)
+ yield {'tts_speech': this_tts_speech}
else:
- tts_speech_token = []
- for i in self.llm.inference(text=text.to(self.device),
- text_len=text_len.to(self.device),
- prompt_text=prompt_text.to(self.device),
- prompt_text_len=prompt_text_len.to(self.device),
- prompt_speech_token=llm_prompt_speech_token.to(self.device),
- prompt_speech_token_len=llm_prompt_speech_token_len.to(self.device),
- embedding=llm_embedding.to(self.device),
- beam_size=1,
- sampling=25,
- max_token_text_ratio=30,
- min_token_text_ratio=3,
- stream=stream):
- tts_speech_token.append(i)
- assert len(tts_speech_token) == 1, 'tts_speech_token len should be 1 when stream is {}'.format(stream)
- tts_speech_token = torch.concat(tts_speech_token, dim=1)
- tts_mel = self.flow.inference(token=tts_speech_token,
- token_len=torch.tensor([tts_speech_token.size(1)], dtype=torch.int32).to(self.device),
- prompt_token=flow_prompt_speech_token.to(self.device),
- prompt_token_len=flow_prompt_speech_token_len.to(self.device),
- prompt_feat=prompt_speech_feat.to(self.device),
- prompt_feat_len=prompt_speech_feat_len.to(self.device),
- embedding=flow_embedding.to(self.device))
- tts_speech = self.hift.inference(mel=tts_mel).cpu()
- torch.cuda.empty_cache()
- yield {'tts_speech': tts_speech}
+ # deal with all tokens
+ p.join()
+ this_tts_speech_token = torch.concat(self.tts_speech_token[this_uuid], dim=1)
+ with self.flow_hift_context:
+ this_tts_speech = self.token2wav(token=this_tts_speech_token,
+ prompt_token=flow_prompt_speech_token.to(self.device),
+ prompt_token_len=flow_prompt_speech_token_len.to(self.device),
+ prompt_feat=prompt_speech_feat.to(self.device),
+ prompt_feat_len=prompt_speech_feat_len.to(self.device),
+ embedding=flow_embedding.to(self.device))
+ yield {'tts_speech': this_tts_speech}
+ with self.lock:
+ self.tts_speech_token.pop(this_uuid)
+ self.llm_end.pop(this_uuid)
+ torch.cuda.synchronize()
diff --git a/cosyvoice/flow/flow.py b/cosyvoice/flow/flow.py
index 009160a..5466542 100644
--- a/cosyvoice/flow/flow.py
+++ b/cosyvoice/flow/flow.py
@@ -105,6 +105,7 @@ class MaskedDiffWithXvec(torch.nn.Module):
embedding = self.spk_embed_affine_layer(embedding)
# concat text and prompt_text
+ token_len1, token_len2 = prompt_token.shape[1], token.shape[1]
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(embedding)
token = self.input_embedding(torch.clamp(token, min=0)) * mask
@@ -112,17 +113,16 @@ class MaskedDiffWithXvec(torch.nn.Module):
# text encode
h, h_lengths = self.encoder(token, token_len)
h = self.encoder_proj(h)
- feat_len = (token_len / 50 * 22050 / 256).int()
- h, h_lengths = self.length_regulator(h, feat_len)
+ mel_len1, mel_len2 = prompt_feat.shape[1], int(token_len2 / 50 * 22050 / 256)
+ h, h_lengths = self.length_regulator.inference(h[:, :token_len1], h[:, token_len1:], mel_len1, mel_len2)
# get conditions
- conds = torch.zeros([1, feat_len.max().item(), self.output_size], device=token.device)
- if prompt_feat.shape[1] != 0:
- for i, j in enumerate(prompt_feat_len):
- conds[i, :j] = prompt_feat[i]
+ conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device)
+ conds[:, :mel_len1] = prompt_feat
conds = conds.transpose(1, 2)
- mask = (~make_pad_mask(feat_len)).to(h)
+ # mask = (~make_pad_mask(feat_len)).to(h)
+ mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
feat = self.decoder(
mu=h.transpose(1, 2).contiguous(),
mask=mask.unsqueeze(1),
@@ -130,6 +130,6 @@ class MaskedDiffWithXvec(torch.nn.Module):
cond=conds,
n_timesteps=10
)
- if prompt_feat.shape[1] != 0:
- feat = feat[:, :, prompt_feat.shape[1]:]
+ feat = feat[:, :, mel_len1:]
+ assert feat.shape[2] == mel_len2
return feat
diff --git a/cosyvoice/flow/length_regulator.py b/cosyvoice/flow/length_regulator.py
index 5d4348e..26cb994 100755
--- a/cosyvoice/flow/length_regulator.py
+++ b/cosyvoice/flow/length_regulator.py
@@ -13,6 +13,7 @@
# limitations under the License.
from typing import Tuple
import torch.nn as nn
+import torch
from torch.nn import functional as F
from cosyvoice.utils.mask import make_pad_mask
@@ -47,3 +48,21 @@ class InterpolateRegulator(nn.Module):
out = self.model(x).transpose(1, 2).contiguous()
olens = ylens
return out * mask, olens
+
+ def inference(self, x1, x2, mel_len1, mel_len2):
+ # in inference mode, interploate prompt token and token(head/mid/tail) seprately, so we can get a clear separation point of mel
+ # x in (B, T, D)
+ if x2.shape[1] > 40:
+ x2_head = F.interpolate(x2[:, :20].transpose(1, 2).contiguous(), size=34, mode='linear')
+ x2_mid = F.interpolate(x2[:, 20:-20].transpose(1, 2).contiguous(), size=mel_len2 - 34 * 2, mode='linear')
+ x2_tail = F.interpolate(x2[:, -20:].transpose(1, 2).contiguous(), size=34, mode='linear')
+ x2 = torch.concat([x2_head, x2_mid, x2_tail], dim=2)
+ else:
+ x2 = F.interpolate(x2.transpose(1, 2).contiguous(), size=mel_len2, mode='linear')
+ if x1.shape[1] != 0:
+ x1 = F.interpolate(x1.transpose(1, 2).contiguous(), size=mel_len1, mode='linear')
+ x = torch.concat([x1, x2], dim=2)
+ else:
+ x = x2
+ out = self.model(x).transpose(1, 2).contiguous()
+ return out, mel_len1 + mel_len2
diff --git a/cosyvoice/llm/llm.py b/cosyvoice/llm/llm.py
index 704a49e..e073117 100644
--- a/cosyvoice/llm/llm.py
+++ b/cosyvoice/llm/llm.py
@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
-from typing import Dict, Optional, Union
+from typing import Dict, Optional, Callable, List, Generator
import torch
from torch import nn
import torch.nn.functional as F
@@ -31,6 +31,7 @@ class TransformerLM(torch.nn.Module):
speech_token_size: int,
text_encoder: torch.nn.Module,
llm: torch.nn.Module,
+ sampling: Callable,
length_normalized_loss: bool = True,
lsm_weight: float = 0.0,
spk_embed_dim: int = 192,
@@ -63,6 +64,9 @@ class TransformerLM(torch.nn.Module):
self.speech_embedding = torch.nn.Embedding(speech_token_size, llm_input_size)
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, llm_input_size)
+ # 4. sampling method
+ self.sampling = sampling
+
def encode(
self,
text: torch.Tensor,
@@ -132,14 +136,12 @@ class TransformerLM(torch.nn.Module):
def sampling_ids(
self,
weighted_scores: torch.Tensor,
- sampling: Union[bool, int, float] = True,
- beam_size: int = 1,
+ decoded_tokens: List,
+ sampling: int,
ignore_eos: bool = True,
):
while True:
- prob, indices = weighted_scores.softmax(dim=-1).topk(sampling)
- top_ids = prob.multinomial(beam_size, replacement=True)
- top_ids = indices[top_ids]
+ top_ids = self.sampling(weighted_scores, decoded_tokens, sampling)
if (not ignore_eos) or (self.speech_token_size not in top_ids):
break
return top_ids
@@ -154,12 +156,10 @@ class TransformerLM(torch.nn.Module):
prompt_speech_token: torch.Tensor,
prompt_speech_token_len: torch.Tensor,
embedding: torch.Tensor,
- beam_size: int = 1,
sampling: int = 25,
max_token_text_ratio: float = 20,
min_token_text_ratio: float = 2,
- stream: bool = False,
- ) -> torch.Tensor:
+ ) -> Generator[torch.Tensor, None, None]:
device = text.device
text = torch.concat([prompt_text, text], dim=1)
text_len += prompt_text_len
@@ -197,16 +197,11 @@ class TransformerLM(torch.nn.Module):
y_pred, att_cache, cnn_cache = self.llm.forward_chunk(lm_input, offset=0, required_cache_size=-1, att_cache=att_cache, cnn_cache=cnn_cache,
att_mask=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool))
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
- top_ids = self.sampling_ids(logp.squeeze(dim=0), sampling, beam_size, ignore_eos=True if i < min_len else False).item()
+ top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
if top_ids == self.speech_token_size:
break
# in stream mode, yield token one by one
- if stream is True:
- yield torch.tensor([[top_ids]], dtype=torch.int64, device=device)
+ yield torch.tensor([[top_ids]], dtype=torch.int64, device=device)
out_tokens.append(top_ids)
offset += lm_input.size(1)
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
-
- # in non-stream mode, yield all token
- if stream is False:
- yield torch.tensor([out_tokens], dtype=torch.int64, device=device)
diff --git a/cosyvoice/utils/common.py b/cosyvoice/utils/common.py
index 6ec5e17..51be904 100644
--- a/cosyvoice/utils/common.py
+++ b/cosyvoice/utils/common.py
@@ -101,3 +101,37 @@ def init_weights(m, mean=0.0, std=0.01):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(mean, std)
+
+# Repetition Aware Sampling in VALL-E 2
+def ras_sampling(weighted_scores, decoded_tokens, sampling, top_p=0.8, top_k=25, win_size=10, tau_r=0.1):
+ top_ids = nucleus_sampling(weighted_scores, top_p=top_p, top_k=top_k)
+ rep_num = (torch.tensor(decoded_tokens[-win_size:]).to(weighted_scores.device) == top_ids).sum().item()
+ if rep_num >= win_size * tau_r:
+ top_ids = random_sampling(weighted_scores, decoded_tokens, sampling)
+ return top_ids
+
+def nucleus_sampling(weighted_scores, top_p=0.8, top_k=25):
+ prob, indices = [], []
+ cum_prob = 0.0
+ sorted_value, sorted_idx = weighted_scores.softmax(dim=0).sort(descending=True, stable=True)
+ for i in range(len(sorted_idx)):
+ # sampling both top-p and numbers.
+ if cum_prob < top_p and len(prob) < top_k:
+ cum_prob += sorted_value[i]
+ prob.append(sorted_value[i])
+ indices.append(sorted_idx[i])
+ else:
+ break
+ prob = torch.tensor(prob).to(weighted_scores)
+ indices = torch.tensor(indices, dtype=torch.long).to(weighted_scores.device)
+ top_ids = indices[prob.multinomial(1, replacement=True)]
+ return top_ids
+
+def random_sampling(weighted_scores, decoded_tokens, sampling):
+ top_ids = weighted_scores.softmax(dim=0).multinomial(1, replacement=True)
+ return top_ids
+
+def fade_in_out(fade_in_speech, fade_out_speech, window):
+ speech_overlap_len = int(window.shape[0] / 2)
+ fade_in_speech[:, :speech_overlap_len] = fade_in_speech[:, :speech_overlap_len] * window[:speech_overlap_len] + fade_out_speech[:, -speech_overlap_len:] * window[speech_overlap_len:]
+ return fade_in_speech
diff --git a/examples/libritts/cosyvoice/conf/cosyvoice.fromscratch.yaml b/examples/libritts/cosyvoice/conf/cosyvoice.fromscratch.yaml
index 54b6e7b..34c1d98 100644
--- a/examples/libritts/cosyvoice/conf/cosyvoice.fromscratch.yaml
+++ b/examples/libritts/cosyvoice/conf/cosyvoice.fromscratch.yaml
@@ -54,6 +54,11 @@ llm: !new:cosyvoice.llm.llm.TransformerLM
pos_enc_layer_type: 'rel_pos_espnet'
selfattention_layer_type: 'rel_selfattn'
static_chunk_size: 1
+ sampling: !name:cosyvoice.utils.common.ras_sampling
+ top_p: 0.8
+ top_k: 25
+ win_size: 10
+ tau_r: 0.1
flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
input_size: 512
diff --git a/examples/libritts/cosyvoice/conf/cosyvoice.yaml b/examples/libritts/cosyvoice/conf/cosyvoice.yaml
index f43af16..c89611c 100644
--- a/examples/libritts/cosyvoice/conf/cosyvoice.yaml
+++ b/examples/libritts/cosyvoice/conf/cosyvoice.yaml
@@ -54,6 +54,11 @@ llm: !new:cosyvoice.llm.llm.TransformerLM
pos_enc_layer_type: 'rel_pos_espnet'
selfattention_layer_type: 'rel_selfattn'
static_chunk_size: 1
+ sampling: !name:cosyvoice.utils.common.ras_sampling
+ top_p: 0.8
+ top_k: 25
+ win_size: 10
+ tau_r: 0.1
flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
input_size: 512
diff --git a/runtime/python/grpc/client.py b/runtime/python/grpc/client.py
index 9d1c27d..b7384ee 100644
--- a/runtime/python/grpc/client.py
+++ b/runtime/python/grpc/client.py
@@ -61,8 +61,11 @@ def main():
request.instruct_request.CopyFrom(instruct_request)
response = stub.Inference(request)
+ tts_audio = b''
+ for r in response:
+ tts_audio += r.tts_audio
+ tts_speech = torch.from_numpy(np.array(np.frombuffer(tts_audio, dtype=np.int16))).unsqueeze(dim=0)
logging.info('save response to {}'.format(args.tts_wav))
- tts_speech = torch.from_numpy(np.array(np.frombuffer(response.tts_audio, dtype=np.int16))).unsqueeze(dim=0)
torchaudio.save(args.tts_wav, tts_speech, target_sr)
logging.info('get response')
diff --git a/runtime/python/grpc/cosyvoice.proto b/runtime/python/grpc/cosyvoice.proto
index babf3e7..fe0c3ad 100644
--- a/runtime/python/grpc/cosyvoice.proto
+++ b/runtime/python/grpc/cosyvoice.proto
@@ -4,7 +4,7 @@ package cosyvoice;
option go_package = "protos/";
service CosyVoice{
- rpc Inference(Request) returns (Response) {}
+ rpc Inference(Request) returns (stream Response) {}
}
message Request{
diff --git a/runtime/python/grpc/server.py b/runtime/python/grpc/server.py
index 0329be7..3c2712a 100644
--- a/runtime/python/grpc/server.py
+++ b/runtime/python/grpc/server.py
@@ -54,9 +54,10 @@ class CosyVoiceServiceImpl(cosyvoice_pb2_grpc.CosyVoiceServicer):
model_output = self.cosyvoice.inference_instruct(request.instruct_request.tts_text, request.instruct_request.spk_id, request.instruct_request.instruct_text)
logging.info('send inference response')
- response = cosyvoice_pb2.Response()
- response.tts_audio = (model_output['tts_speech'].numpy() * (2 ** 15)).astype(np.int16).tobytes()
- return response
+ for i in model_output:
+ response = cosyvoice_pb2.Response()
+ response.tts_audio = (i['tts_speech'].numpy() * (2 ** 15)).astype(np.int16).tobytes()
+ yield response
def main():
grpcServer = grpc.server(futures.ThreadPoolExecutor(max_workers=args.max_conc), maximum_concurrent_rpcs=args.max_conc)
diff --git a/webui.py b/webui.py
index be74f04..e608d80 100644
--- a/webui.py
+++ b/webui.py
@@ -164,7 +164,7 @@ def main():
outputs=[audio_output])
mode_checkbox_group.change(fn=change_instruction, inputs=[mode_checkbox_group], outputs=[instruction_text])
demo.queue(max_size=4, default_concurrency_limit=2)
- demo.launch(server_port=args.port)
+ demo.launch(server_name='0.0.0.0', server_port=args.port)
if __name__ == '__main__':
parser = argparse.ArgumentParser()