mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 17:39:25 +08:00
update
This commit is contained in:
@@ -19,6 +19,7 @@ from typing import Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class ConvolutionModule(nn.Module):
|
||||
@@ -143,3 +144,115 @@ class ConvolutionModule(nn.Module):
|
||||
x.masked_fill_(~mask_pad, 0.0)
|
||||
|
||||
return x.transpose(1, 2), new_cache
|
||||
|
||||
|
||||
# NOTE(Xiang Lyu) causal conv module used in convolution-based vocoder
|
||||
class CausalConv1d(torch.nn.Conv1d):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
kernel_size: int,
|
||||
stride: int = 1,
|
||||
dilation: int = 1,
|
||||
groups: int = 1,
|
||||
bias: bool = True,
|
||||
padding_mode: str = 'zeros',
|
||||
causal_type: str = 'left',
|
||||
device=None,
|
||||
dtype=None
|
||||
) -> None:
|
||||
super(CausalConv1d, self).__init__(in_channels, out_channels,
|
||||
kernel_size, stride=1,
|
||||
padding=0, dilation=dilation,
|
||||
groups=groups, bias=bias,
|
||||
padding_mode=padding_mode,
|
||||
device=device, dtype=dtype)
|
||||
assert stride == 1
|
||||
self.causal_padding = int((kernel_size * dilation - dilation) / 2) * 2 + (kernel_size + 1) % 2
|
||||
assert causal_type in ['left', 'right']
|
||||
self.causal_type = causal_type
|
||||
|
||||
def forward(self, x: torch.Tensor, cache: torch.Tensor = torch.zeros(0, 0, 0)) -> Tuple[torch.Tensor]:
|
||||
input_timestep = x.shape[2]
|
||||
if cache.size(2) == 0:
|
||||
cache = torch.zeros(x.shape[0], x.shape[1], self.causal_padding).to(x)
|
||||
assert cache.size(2) == self.causal_padding
|
||||
if self.causal_type == 'left':
|
||||
x = torch.concat([cache, x], dim=2)
|
||||
else:
|
||||
x = torch.concat([x, cache], dim=2)
|
||||
x = super(CausalConv1d, self).forward(x)
|
||||
assert x.shape[2] == input_timestep
|
||||
return x
|
||||
|
||||
|
||||
class CausalConv1dDownSample(torch.nn.Conv1d):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
kernel_size: int,
|
||||
stride: int = 1,
|
||||
dilation: int = 1,
|
||||
groups: int = 1,
|
||||
bias: bool = True,
|
||||
padding_mode: str = 'zeros',
|
||||
device=None,
|
||||
dtype=None
|
||||
) -> None:
|
||||
super(CausalConv1dDownSample, self).__init__(in_channels, out_channels,
|
||||
kernel_size, stride,
|
||||
padding=0, dilation=dilation,
|
||||
groups=groups, bias=bias,
|
||||
padding_mode=padding_mode,
|
||||
device=device, dtype=dtype)
|
||||
assert stride != 1 and dilation == 1
|
||||
assert kernel_size % stride == 0
|
||||
self.causal_padding = stride - 1
|
||||
|
||||
def forward(self, x: torch.Tensor, cache: torch.Tensor = torch.zeros(0, 0, 0)) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
if cache.size(2) == 0:
|
||||
x = F.pad(x, (self.causal_padding, 0), value=0.0)
|
||||
else:
|
||||
assert cache.size(2) == self.causal_padding
|
||||
x = torch.concat([cache, x], dim=2)
|
||||
x = super(CausalConv1dDownSample, self).forward(x)
|
||||
return x
|
||||
|
||||
|
||||
class CausalConv1dUpsample(torch.nn.Conv1d):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
kernel_size: int,
|
||||
stride: int = 1,
|
||||
dilation: int = 1,
|
||||
groups: int = 1,
|
||||
bias: bool = True,
|
||||
padding_mode: str = 'zeros',
|
||||
device=None,
|
||||
dtype=None
|
||||
) -> None:
|
||||
super(CausalConv1dUpsample, self).__init__(in_channels, out_channels,
|
||||
kernel_size, 1,
|
||||
padding=0, dilation=dilation,
|
||||
groups=groups, bias=bias,
|
||||
padding_mode=padding_mode,
|
||||
device=device, dtype=dtype)
|
||||
assert dilation == 1
|
||||
self.causal_padding = kernel_size - 1
|
||||
self.upsample = torch.nn.Upsample(scale_factor=stride, mode='nearest')
|
||||
|
||||
def forward(self, x: torch.Tensor, cache: torch.Tensor = torch.zeros(0, 0, 0)) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
x = self.upsample(x)
|
||||
input_timestep = x.shape[2]
|
||||
if cache.size(2) == 0:
|
||||
x = F.pad(x, (self.causal_padding, 0), value=0.0)
|
||||
else:
|
||||
assert cache.size(2) == self.causal_padding
|
||||
x = torch.concat([cache, x], dim=2)
|
||||
x = super(CausalConv1dUpsample, self).forward(x)
|
||||
assert input_timestep == x.shape[2]
|
||||
return x
|
||||
Reference in New Issue
Block a user