mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 09:29:25 +08:00
add spk trt
This commit is contained in:
@@ -35,9 +35,9 @@ import torch
|
||||
from torch.utils.dlpack import from_dlpack, to_dlpack
|
||||
import triton_python_backend_utils as pb_utils
|
||||
from transformers import AutoTokenizer
|
||||
import torchaudio.compliance.kaldi as kaldi
|
||||
|
||||
import torchaudio
|
||||
import onnxruntime
|
||||
|
||||
|
||||
|
||||
from matcha.utils.audio import mel_spectrogram
|
||||
@@ -72,12 +72,6 @@ class TritonPythonModel:
|
||||
self.device = torch.device("cuda")
|
||||
self.decoupled = pb_utils.using_decoupled_model_transaction_policy(self.model_config)
|
||||
|
||||
campplus_model = f'{model_params["model_dir"]}/campplus.onnx'
|
||||
option = onnxruntime.SessionOptions()
|
||||
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
||||
option.intra_op_num_threads = 1
|
||||
self.campplus_session = onnxruntime.InferenceSession(campplus_model, sess_options=option, providers=["CPUExecutionProvider"])
|
||||
|
||||
def forward_llm(self, input_ids):
|
||||
"""
|
||||
Prepares the response from the language model based on the provided
|
||||
@@ -190,6 +184,33 @@ class TritonPythonModel:
|
||||
|
||||
return prompt_speech_tokens
|
||||
|
||||
|
||||
def forward_speaker_embedding(self, wav):
|
||||
"""Forward pass through the speaker embedding component.
|
||||
|
||||
Args:
|
||||
wav: Input waveform tensor
|
||||
|
||||
Returns:
|
||||
Prompt speaker embedding tensor
|
||||
"""
|
||||
inference_request = pb_utils.InferenceRequest(
|
||||
model_name='speaker_embedding',
|
||||
requested_output_names=['prompt_spk_embedding'],
|
||||
inputs=[pb_utils.Tensor.from_dlpack("reference_wav", to_dlpack(wav))]
|
||||
)
|
||||
|
||||
inference_response = inference_request.exec()
|
||||
if inference_response.has_error():
|
||||
raise pb_utils.TritonModelException(inference_response.error().message())
|
||||
|
||||
# Extract and convert output tensors
|
||||
prompt_spk_embedding = pb_utils.get_output_tensor_by_name(inference_response, 'prompt_spk_embedding')
|
||||
prompt_spk_embedding = torch.utils.dlpack.from_dlpack(prompt_spk_embedding.to_dlpack())
|
||||
|
||||
return prompt_spk_embedding
|
||||
|
||||
|
||||
def forward_token2wav(
|
||||
self,
|
||||
prompt_speech_tokens: torch.Tensor,
|
||||
@@ -251,16 +272,6 @@ class TritonPythonModel:
|
||||
input_ids = torch.cat([input_ids, prompt_speech_tokens], dim=1)
|
||||
return input_ids
|
||||
|
||||
def _extract_spk_embedding(self, speech):
|
||||
feat = kaldi.fbank(speech,
|
||||
num_mel_bins=80,
|
||||
dither=0,
|
||||
sample_frequency=16000)
|
||||
feat = feat - feat.mean(dim=0, keepdim=True)
|
||||
embedding = self.campplus_session.run(None,
|
||||
{self.campplus_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
||||
embedding = torch.tensor([embedding]).to(self.device).half()
|
||||
return embedding
|
||||
|
||||
def _extract_speech_feat(self, speech):
|
||||
speech_feat = mel_spectrogram(
|
||||
@@ -330,7 +341,7 @@ class TritonPythonModel:
|
||||
# Generate semantic tokens with LLM
|
||||
generated_ids_iter = self.forward_llm(input_ids)
|
||||
|
||||
prompt_spk_embedding = self._extract_spk_embedding(wav_tensor)
|
||||
prompt_spk_embedding = self.forward_speaker_embedding(wav_tensor)
|
||||
print(f"here2")
|
||||
if self.decoupled:
|
||||
response_sender = request.get_response_sender()
|
||||
|
||||
154
runtime/triton_trtllm/model_repo/speaker_embedding/1/model.py
Normal file
154
runtime/triton_trtllm/model_repo/speaker_embedding/1/model.py
Normal file
@@ -0,0 +1,154 @@
|
||||
# Copyright 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions
|
||||
# are met:
|
||||
# * Redistributions of source code must retain the above copyright
|
||||
# notice, this list of conditions and the following disclaimer.
|
||||
# * Redistributions in binary form must reproduce the above copyright
|
||||
# notice, this list of conditions and the following disclaimer in the
|
||||
# documentation and/or other materials provided with the distribution.
|
||||
# * Neither the name of NVIDIA CORPORATION nor the names of its
|
||||
# contributors may be used to endorse or promote products derived
|
||||
# from this software without specific prior written permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
||||
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||||
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
import json
|
||||
import torch
|
||||
from torch.utils.dlpack import to_dlpack
|
||||
|
||||
import triton_python_backend_utils as pb_utils
|
||||
|
||||
import os
|
||||
import numpy as np
|
||||
import torchaudio.compliance.kaldi as kaldi
|
||||
from cosyvoice.utils.file_utils import convert_onnx_to_trt
|
||||
from cosyvoice.utils.common import TrtContextWrapper
|
||||
import onnxruntime
|
||||
|
||||
|
||||
class TritonPythonModel:
|
||||
"""Triton Python model for audio tokenization.
|
||||
|
||||
This model takes reference audio input and extracts semantic tokens
|
||||
using s3tokenizer.
|
||||
"""
|
||||
|
||||
def initialize(self, args):
|
||||
"""Initialize the model.
|
||||
|
||||
Args:
|
||||
args: Dictionary containing model configuration
|
||||
"""
|
||||
# Parse model parameters
|
||||
parameters = json.loads(args['model_config'])['parameters']
|
||||
model_params = {k: v["string_value"] for k, v in parameters.items()}
|
||||
|
||||
self.device = torch.device("cuda")
|
||||
|
||||
model_dir = model_params["model_dir"]
|
||||
gpu="l20"
|
||||
enable_trt = True
|
||||
if enable_trt:
|
||||
self.load_spk_trt(f'{model_dir}/campplus.{gpu}.fp32.trt',
|
||||
f'{model_dir}/campplus.onnx',
|
||||
1,
|
||||
False)
|
||||
else:
|
||||
campplus_model = f'{model_dir}/campplus.onnx'
|
||||
option = onnxruntime.SessionOptions()
|
||||
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
||||
option.intra_op_num_threads = 1
|
||||
self.spk_model = onnxruntime.InferenceSession(campplus_model, sess_options=option, providers=["CPUExecutionProvider"])
|
||||
|
||||
def load_spk_trt(self, spk_model, spk_onnx_model, trt_concurrent=1, fp16=True):
|
||||
if not os.path.exists(spk_model) or os.path.getsize(spk_model) == 0:
|
||||
trt_kwargs = self.get_spk_trt_kwargs()
|
||||
convert_onnx_to_trt(spk_model, trt_kwargs, spk_onnx_model, fp16)
|
||||
import tensorrt as trt
|
||||
with open(spk_model, 'rb') as f:
|
||||
spk_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
|
||||
assert spk_engine is not None, 'failed to load trt {}'.format(spk_model)
|
||||
self.spk_model = TrtContextWrapper(spk_engine, trt_concurrent=trt_concurrent, device=self.device)
|
||||
|
||||
def get_spk_trt_kwargs(self):
|
||||
min_shape = [(1, 4, 80)]
|
||||
opt_shape = [(1, 500, 80)]
|
||||
max_shape = [(1, 3000, 80)]
|
||||
input_names = ["input"]
|
||||
return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}
|
||||
|
||||
def _extract_spk_embedding(self, speech):
|
||||
feat = kaldi.fbank(speech,
|
||||
num_mel_bins=80,
|
||||
dither=0,
|
||||
sample_frequency=16000)
|
||||
spk_feat = feat - feat.mean(dim=0, keepdim=True)
|
||||
|
||||
if isinstance(self.spk_model, onnxruntime.InferenceSession):
|
||||
embedding = self.spk_model.run(
|
||||
None, {self.spk_model.get_inputs()[0].name: spk_feat.unsqueeze(dim=0).cpu().numpy()}
|
||||
)[0].flatten().tolist()
|
||||
embedding = torch.tensor([embedding]).to(self.device)
|
||||
else:
|
||||
[spk_model, stream], trt_engine = self.spk_model.acquire_estimator()
|
||||
# NOTE need to synchronize when switching stream
|
||||
with torch.cuda.device(self.device):
|
||||
torch.cuda.current_stream().synchronize()
|
||||
spk_feat = spk_feat.unsqueeze(dim=0).to(self.device)
|
||||
batch_size = spk_feat.size(0)
|
||||
|
||||
with stream:
|
||||
spk_model.set_input_shape('input', (batch_size, spk_feat.size(1), 80))
|
||||
embedding = torch.empty((batch_size, 192), device=spk_feat.device)
|
||||
|
||||
data_ptrs = [spk_feat.contiguous().data_ptr(),
|
||||
embedding.contiguous().data_ptr()]
|
||||
for i, j in enumerate(data_ptrs):
|
||||
|
||||
spk_model.set_tensor_address(trt_engine.get_tensor_name(i), j)
|
||||
# run trt engine
|
||||
assert spk_model.execute_async_v3(torch.cuda.current_stream().cuda_stream) is True
|
||||
torch.cuda.current_stream().synchronize()
|
||||
self.spk_model.release_estimator(spk_model, stream)
|
||||
|
||||
return embedding.half()
|
||||
|
||||
def execute(self, requests):
|
||||
"""Execute inference on the batched requests.
|
||||
|
||||
Args:
|
||||
requests: List of inference requests
|
||||
|
||||
Returns:
|
||||
List of inference responses containing tokenized outputs
|
||||
"""
|
||||
responses = []
|
||||
# Process each request in batch
|
||||
for request in requests:
|
||||
# Extract input tensors
|
||||
wav_array = pb_utils.get_input_tensor_by_name(
|
||||
request, "reference_wav").as_numpy()
|
||||
wav_array = torch.from_numpy(wav_array).to(self.device)
|
||||
|
||||
embedding = self._extract_spk_embedding(wav_array)
|
||||
|
||||
|
||||
prompt_spk_embedding_tensor = pb_utils.Tensor.from_dlpack(
|
||||
"prompt_spk_embedding", to_dlpack(embedding))
|
||||
inference_response = pb_utils.InferenceResponse(
|
||||
output_tensors=[prompt_spk_embedding_tensor])
|
||||
|
||||
responses.append(inference_response)
|
||||
|
||||
return responses
|
||||
@@ -0,0 +1,48 @@
|
||||
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
name: "speaker_embedding"
|
||||
backend: "python"
|
||||
max_batch_size: ${triton_max_batch_size}
|
||||
dynamic_batching {
|
||||
max_queue_delay_microseconds: ${max_queue_delay_microseconds}
|
||||
}
|
||||
parameters [
|
||||
{
|
||||
key: "model_dir",
|
||||
value: {string_value:"${model_dir}"}
|
||||
}
|
||||
]
|
||||
|
||||
input [
|
||||
{
|
||||
name: "reference_wav"
|
||||
data_type: TYPE_FP32
|
||||
dims: [-1]
|
||||
}
|
||||
]
|
||||
output [
|
||||
{
|
||||
name: "prompt_spk_embedding"
|
||||
data_type: TYPE_FP16
|
||||
dims: [-1]
|
||||
}
|
||||
]
|
||||
|
||||
instance_group [
|
||||
{
|
||||
count: 1
|
||||
kind: KIND_CPU
|
||||
}
|
||||
]
|
||||
Reference in New Issue
Block a user