This commit is contained in:
lyuxiang.lx
2025-08-20 16:55:03 +08:00
parent da41f6175b
commit dd2d926147
2 changed files with 22 additions and 55 deletions

View File

@@ -1,3 +1,4 @@
""" """
ein notation: ein notation:
b - batch b - batch
@@ -14,9 +15,8 @@ from torch import nn
import torch.nn.functional as F import torch.nn.functional as F
from einops import repeat from einops import repeat
from x_transformers.x_transformers import RotaryEmbedding from x_transformers.x_transformers import RotaryEmbedding
from funasr.models.transformer.utils.mask import causal_block_mask from cosyvoice.utils.mask import add_optional_chunk_mask
from cosyvoice.flow.DiT.modules import (
from cosyvoice.flow.DiT.dit_modules import (
TimestepEmbedding, TimestepEmbedding,
ConvNeXtV2Block, ConvNeXtV2Block,
CausalConvPositionEmbedding, CausalConvPositionEmbedding,
@@ -115,7 +115,8 @@ class DiT(nn.Module):
mu_dim=None, mu_dim=None,
long_skip_connection=False, long_skip_connection=False,
spk_dim=None, spk_dim=None,
**kwargs static_chunk_size=50,
num_decoding_left_chunks=2
): ):
super().__init__() super().__init__()
@@ -136,50 +137,20 @@ class DiT(nn.Module):
self.norm_out = AdaLayerNormZero_Final(dim) # final modulation self.norm_out = AdaLayerNormZero_Final(dim) # final modulation
self.proj_out = nn.Linear(dim, mel_dim) self.proj_out = nn.Linear(dim, mel_dim)
self.causal_mask_type = kwargs.get("causal_mask_type", None) self.static_chunk_size = static_chunk_size
self.num_decoding_left_chunks = num_decoding_left_chunks
def build_mix_causal_mask(self, attn_mask, rand=None, ratio=None): def forward(self, x, mask, mu, t, spks=None, cond=None, streaming=False):
b, _, _, t = attn_mask.shape x = x.transpose(1, 2)
if rand is None: mu = mu.transpose(1, 2)
rand = torch.rand((b, 1, 1, 1), device=attn_mask.device, dtype=torch.float32) cond = cond.transpose(1, 2)
mixed_mask = attn_mask.clone() spks = spks.unsqueeze(dim=1)
for item in self.causal_mask_type:
prob_min, prob_max = item["prob_min"], item["prob_max"]
_ratio = 1
if "ratio" in item:
_ratio = item["ratio"]
if ratio is not None:
_ratio = ratio
block_size = item["block_size"] * _ratio
if block_size <= 0:
causal_mask = attn_mask
else:
causal_mask = causal_block_mask(
t, block_size, attn_mask.device, torch.float32
).unsqueeze(0).unsqueeze(1) # 1,1,T,T
flag = (prob_min <= rand) & (rand < prob_max)
mixed_mask = mixed_mask * (~flag) + (causal_mask * attn_mask) * flag
return mixed_mask
def forward(
self,
x: float["b n d"], # nosied input audio
cond: float["b n d"], # masked cond audio
mu: int["b nt d"], # mu
spks: float["b 1 d"], # spk xvec
time: float["b"] | float[""], # time step
return_hidden: bool = False,
mask: bool["b 1 n"] | None = None,
mask_rand: float["b 1 1"] = None, # for mask flag type
**kwargs,
):
batch, seq_len = x.shape[0], x.shape[1] batch, seq_len = x.shape[0], x.shape[1]
if time.ndim == 0: if t.ndim == 0:
time = time.repeat(batch) t = t.repeat(batch)
# t: conditioning time, c: context (text + masked cond audio), x: noised input audio # t: conditioning time, c: context (text + masked cond audio), x: noised input audio
t = self.time_embed(time) t = self.time_embed(t)
x = self.input_embed(x, cond, mu, spks.squeeze(1)) x = self.input_embed(x, cond, mu, spks.squeeze(1))
rope = self.rotary_embed.forward_from_seq_len(seq_len) rope = self.rotary_embed.forward_from_seq_len(seq_len)
@@ -187,22 +158,17 @@ class DiT(nn.Module):
if self.long_skip_connection is not None: if self.long_skip_connection is not None:
residual = x residual = x
mask = mask.unsqueeze(1) # B,1,1,T if streaming is True:
if self.causal_mask_type is not None: attn_mask = add_optional_chunk_mask(x, mask.bool(), False, False, 0, self.static_chunk_size, -1).unsqueeze(dim=1)
mask = self.build_mix_causal_mask(mask, rand=mask_rand.unsqueeze(-1)) else:
attn_mask = add_optional_chunk_mask(x, mask.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1).unsqueeze(dim=1)
for block in self.transformer_blocks: for block in self.transformer_blocks:
# mask-out padded values for amp training x = block(x, t, mask=attn_mask.bool(), rope=rope)
x = x * mask[:, 0, -1, :].unsqueeze(-1)
x = block(x, t, mask=mask.bool(), rope=rope)
if self.long_skip_connection is not None: if self.long_skip_connection is not None:
x = self.long_skip_connection(torch.cat((x, residual), dim=-1)) x = self.long_skip_connection(torch.cat((x, residual), dim=-1))
x = self.norm_out(x, t) x = self.norm_out(x, t)
output = self.proj_out(x) output = self.proj_out(x).transpose(1, 2)
if return_hidden:
return output, None
return output return output

View File

@@ -1,3 +1,4 @@
""" """
ein notation: ein notation:
b - batch b - batch