mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 17:39:25 +08:00
update
This commit is contained in:
208
cosyvoice/flow/DiT/dit_model.py
Normal file
208
cosyvoice/flow/DiT/dit_model.py
Normal file
@@ -0,0 +1,208 @@
|
|||||||
|
"""
|
||||||
|
ein notation:
|
||||||
|
b - batch
|
||||||
|
n - sequence
|
||||||
|
nt - text sequence
|
||||||
|
nw - raw wave length
|
||||||
|
d - dimension
|
||||||
|
"""
|
||||||
|
|
||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from einops import repeat
|
||||||
|
from x_transformers.x_transformers import RotaryEmbedding
|
||||||
|
from funasr.models.transformer.utils.mask import causal_block_mask
|
||||||
|
|
||||||
|
from cosyvoice.flow.DiT.dit_modules import (
|
||||||
|
TimestepEmbedding,
|
||||||
|
ConvNeXtV2Block,
|
||||||
|
CausalConvPositionEmbedding,
|
||||||
|
DiTBlock,
|
||||||
|
AdaLayerNormZero_Final,
|
||||||
|
precompute_freqs_cis,
|
||||||
|
get_pos_embed_indices,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# Text embedding
|
||||||
|
|
||||||
|
|
||||||
|
class TextEmbedding(nn.Module):
|
||||||
|
def __init__(self, text_num_embeds, text_dim, conv_layers=0, conv_mult=2):
|
||||||
|
super().__init__()
|
||||||
|
self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token
|
||||||
|
|
||||||
|
if conv_layers > 0:
|
||||||
|
self.extra_modeling = True
|
||||||
|
self.precompute_max_pos = 4096 # ~44s of 24khz audio
|
||||||
|
self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, self.precompute_max_pos), persistent=False)
|
||||||
|
self.text_blocks = nn.Sequential(
|
||||||
|
*[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)]
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
self.extra_modeling = False
|
||||||
|
|
||||||
|
def forward(self, text: int["b nt"], seq_len, drop_text=False): # noqa: F722
|
||||||
|
batch, text_len = text.shape[0], text.shape[1]
|
||||||
|
text = text + 1 # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx()
|
||||||
|
text = text[:, :seq_len] # curtail if character tokens are more than the mel spec tokens
|
||||||
|
text = F.pad(text, (0, seq_len - text_len), value=0)
|
||||||
|
|
||||||
|
if drop_text: # cfg for text
|
||||||
|
text = torch.zeros_like(text)
|
||||||
|
|
||||||
|
text = self.text_embed(text) # b n -> b n d
|
||||||
|
|
||||||
|
# possible extra modeling
|
||||||
|
if self.extra_modeling:
|
||||||
|
# sinus pos emb
|
||||||
|
batch_start = torch.zeros((batch,), dtype=torch.long)
|
||||||
|
pos_idx = get_pos_embed_indices(batch_start, seq_len, max_pos=self.precompute_max_pos)
|
||||||
|
text_pos_embed = self.freqs_cis[pos_idx]
|
||||||
|
text = text + text_pos_embed
|
||||||
|
|
||||||
|
# convnextv2 blocks
|
||||||
|
text = self.text_blocks(text)
|
||||||
|
|
||||||
|
return text
|
||||||
|
|
||||||
|
|
||||||
|
# noised input audio and context mixing embedding
|
||||||
|
|
||||||
|
|
||||||
|
class InputEmbedding(nn.Module):
|
||||||
|
def __init__(self, mel_dim, text_dim, out_dim, spk_dim=None):
|
||||||
|
super().__init__()
|
||||||
|
spk_dim = 0 if spk_dim is None else spk_dim
|
||||||
|
self.spk_dim = spk_dim
|
||||||
|
self.proj = nn.Linear(mel_dim * 2 + text_dim + spk_dim, out_dim)
|
||||||
|
self.conv_pos_embed = CausalConvPositionEmbedding(dim=out_dim)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
x: float["b n d"],
|
||||||
|
cond: float["b n d"],
|
||||||
|
text_embed: float["b n d"],
|
||||||
|
spks: float["b d"],
|
||||||
|
):
|
||||||
|
to_cat = [x, cond, text_embed]
|
||||||
|
if self.spk_dim > 0:
|
||||||
|
spks = repeat(spks, "b c -> b t c", t=x.shape[1])
|
||||||
|
to_cat.append(spks)
|
||||||
|
|
||||||
|
x = self.proj(torch.cat(to_cat, dim=-1))
|
||||||
|
x = self.conv_pos_embed(x) + x
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
# Transformer backbone using DiT blocks
|
||||||
|
|
||||||
|
|
||||||
|
class DiT(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
dim,
|
||||||
|
depth=8,
|
||||||
|
heads=8,
|
||||||
|
dim_head=64,
|
||||||
|
dropout=0.1,
|
||||||
|
ff_mult=4,
|
||||||
|
mel_dim=80,
|
||||||
|
mu_dim=None,
|
||||||
|
long_skip_connection=False,
|
||||||
|
spk_dim=None,
|
||||||
|
**kwargs
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.time_embed = TimestepEmbedding(dim)
|
||||||
|
if mu_dim is None:
|
||||||
|
mu_dim = mel_dim
|
||||||
|
self.input_embed = InputEmbedding(mel_dim, mu_dim, dim, spk_dim)
|
||||||
|
|
||||||
|
self.rotary_embed = RotaryEmbedding(dim_head)
|
||||||
|
|
||||||
|
self.dim = dim
|
||||||
|
self.depth = depth
|
||||||
|
|
||||||
|
self.transformer_blocks = nn.ModuleList(
|
||||||
|
[DiTBlock(dim=dim, heads=heads, dim_head=dim_head, ff_mult=ff_mult, dropout=dropout) for _ in range(depth)]
|
||||||
|
)
|
||||||
|
self.long_skip_connection = nn.Linear(dim * 2, dim, bias=False) if long_skip_connection else None
|
||||||
|
|
||||||
|
self.norm_out = AdaLayerNormZero_Final(dim) # final modulation
|
||||||
|
self.proj_out = nn.Linear(dim, mel_dim)
|
||||||
|
self.causal_mask_type = kwargs.get("causal_mask_type", None)
|
||||||
|
|
||||||
|
def build_mix_causal_mask(self, attn_mask, rand=None, ratio=None):
|
||||||
|
b, _, _, t = attn_mask.shape
|
||||||
|
if rand is None:
|
||||||
|
rand = torch.rand((b, 1, 1, 1), device=attn_mask.device, dtype=torch.float32)
|
||||||
|
mixed_mask = attn_mask.clone()
|
||||||
|
for item in self.causal_mask_type:
|
||||||
|
prob_min, prob_max = item["prob_min"], item["prob_max"]
|
||||||
|
_ratio = 1
|
||||||
|
if "ratio" in item:
|
||||||
|
_ratio = item["ratio"]
|
||||||
|
if ratio is not None:
|
||||||
|
_ratio = ratio
|
||||||
|
block_size = item["block_size"] * _ratio
|
||||||
|
if block_size <= 0:
|
||||||
|
causal_mask = attn_mask
|
||||||
|
else:
|
||||||
|
causal_mask = causal_block_mask(
|
||||||
|
t, block_size, attn_mask.device, torch.float32
|
||||||
|
).unsqueeze(0).unsqueeze(1) # 1,1,T,T
|
||||||
|
flag = (prob_min <= rand) & (rand < prob_max)
|
||||||
|
mixed_mask = mixed_mask * (~flag) + (causal_mask * attn_mask) * flag
|
||||||
|
|
||||||
|
return mixed_mask
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
x: float["b n d"], # nosied input audio
|
||||||
|
cond: float["b n d"], # masked cond audio
|
||||||
|
mu: int["b nt d"], # mu
|
||||||
|
spks: float["b 1 d"], # spk xvec
|
||||||
|
time: float["b"] | float[""], # time step
|
||||||
|
return_hidden: bool = False,
|
||||||
|
mask: bool["b 1 n"] | None = None,
|
||||||
|
mask_rand: float["b 1 1"] = None, # for mask flag type
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
|
batch, seq_len = x.shape[0], x.shape[1]
|
||||||
|
if time.ndim == 0:
|
||||||
|
time = time.repeat(batch)
|
||||||
|
|
||||||
|
# t: conditioning time, c: context (text + masked cond audio), x: noised input audio
|
||||||
|
t = self.time_embed(time)
|
||||||
|
x = self.input_embed(x, cond, mu, spks.squeeze(1))
|
||||||
|
|
||||||
|
rope = self.rotary_embed.forward_from_seq_len(seq_len)
|
||||||
|
|
||||||
|
if self.long_skip_connection is not None:
|
||||||
|
residual = x
|
||||||
|
|
||||||
|
mask = mask.unsqueeze(1) # B,1,1,T
|
||||||
|
if self.causal_mask_type is not None:
|
||||||
|
mask = self.build_mix_causal_mask(mask, rand=mask_rand.unsqueeze(-1))
|
||||||
|
|
||||||
|
for block in self.transformer_blocks:
|
||||||
|
# mask-out padded values for amp training
|
||||||
|
x = x * mask[:, 0, -1, :].unsqueeze(-1)
|
||||||
|
x = block(x, t, mask=mask.bool(), rope=rope)
|
||||||
|
|
||||||
|
if self.long_skip_connection is not None:
|
||||||
|
x = self.long_skip_connection(torch.cat((x, residual), dim=-1))
|
||||||
|
|
||||||
|
x = self.norm_out(x, t)
|
||||||
|
output = self.proj_out(x)
|
||||||
|
|
||||||
|
if return_hidden:
|
||||||
|
return output, None
|
||||||
|
|
||||||
|
return output
|
||||||
615
cosyvoice/flow/DiT/dit_modules.py
Normal file
615
cosyvoice/flow/DiT/dit_modules.py
Normal file
@@ -0,0 +1,615 @@
|
|||||||
|
"""
|
||||||
|
ein notation:
|
||||||
|
b - batch
|
||||||
|
n - sequence
|
||||||
|
nt - text sequence
|
||||||
|
nw - raw wave length
|
||||||
|
d - dimension
|
||||||
|
"""
|
||||||
|
|
||||||
|
from __future__ import annotations
|
||||||
|
from typing import Optional
|
||||||
|
import math
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
import torchaudio
|
||||||
|
|
||||||
|
from x_transformers.x_transformers import apply_rotary_pos_emb
|
||||||
|
|
||||||
|
|
||||||
|
# raw wav to mel spec
|
||||||
|
class MelSpec(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
filter_length=1024,
|
||||||
|
hop_length=256,
|
||||||
|
win_length=1024,
|
||||||
|
n_mel_channels=100,
|
||||||
|
target_sample_rate=24_000,
|
||||||
|
normalize=False,
|
||||||
|
power=1,
|
||||||
|
norm=None,
|
||||||
|
center=True,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.n_mel_channels = n_mel_channels
|
||||||
|
|
||||||
|
self.mel_stft = torchaudio.transforms.MelSpectrogram(
|
||||||
|
sample_rate=target_sample_rate,
|
||||||
|
n_fft=filter_length,
|
||||||
|
win_length=win_length,
|
||||||
|
hop_length=hop_length,
|
||||||
|
n_mels=n_mel_channels,
|
||||||
|
power=power,
|
||||||
|
center=center,
|
||||||
|
normalized=normalize,
|
||||||
|
norm=norm,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.register_buffer("dummy", torch.tensor(0), persistent=False)
|
||||||
|
|
||||||
|
def forward(self, inp):
|
||||||
|
if len(inp.shape) == 3:
|
||||||
|
inp = inp.squeeze(1) # 'b 1 nw -> b nw'
|
||||||
|
|
||||||
|
assert len(inp.shape) == 2
|
||||||
|
|
||||||
|
if self.dummy.device != inp.device:
|
||||||
|
self.to(inp.device)
|
||||||
|
|
||||||
|
mel = self.mel_stft(inp)
|
||||||
|
mel = mel.clamp(min=1e-5).log()
|
||||||
|
return mel
|
||||||
|
|
||||||
|
|
||||||
|
# sinusoidal position embedding
|
||||||
|
|
||||||
|
|
||||||
|
class SinusPositionEmbedding(nn.Module):
|
||||||
|
def __init__(self, dim):
|
||||||
|
super().__init__()
|
||||||
|
self.dim = dim
|
||||||
|
|
||||||
|
def forward(self, x, scale=1000):
|
||||||
|
device = x.device
|
||||||
|
half_dim = self.dim // 2
|
||||||
|
emb = math.log(10000) / (half_dim - 1)
|
||||||
|
emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
|
||||||
|
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
|
||||||
|
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
|
||||||
|
return emb
|
||||||
|
|
||||||
|
|
||||||
|
# convolutional position embedding
|
||||||
|
|
||||||
|
|
||||||
|
class ConvPositionEmbedding(nn.Module):
|
||||||
|
def __init__(self, dim, kernel_size=31, groups=16):
|
||||||
|
super().__init__()
|
||||||
|
assert kernel_size % 2 != 0
|
||||||
|
self.conv1d = nn.Sequential(
|
||||||
|
nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2),
|
||||||
|
nn.Mish(),
|
||||||
|
nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2),
|
||||||
|
nn.Mish(),
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x: float["b n d"], mask: bool["b n"] | None = None): # noqa: F722
|
||||||
|
if mask is not None:
|
||||||
|
mask = mask[..., None]
|
||||||
|
x = x.masked_fill(~mask, 0.0)
|
||||||
|
|
||||||
|
x = x.permute(0, 2, 1)
|
||||||
|
x = self.conv1d(x)
|
||||||
|
out = x.permute(0, 2, 1)
|
||||||
|
|
||||||
|
if mask is not None:
|
||||||
|
out = out.masked_fill(~mask, 0.0)
|
||||||
|
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class CausalConvPositionEmbedding(nn.Module):
|
||||||
|
def __init__(self, dim, kernel_size=31, groups=16):
|
||||||
|
super().__init__()
|
||||||
|
assert kernel_size % 2 != 0
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.conv1 = nn.Sequential(
|
||||||
|
nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=0),
|
||||||
|
nn.Mish(),
|
||||||
|
)
|
||||||
|
self.conv2 = nn.Sequential(
|
||||||
|
nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=0),
|
||||||
|
nn.Mish(),
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x: float["b n d"], mask: bool["b n"] | None = None): # noqa: F722
|
||||||
|
if mask is not None:
|
||||||
|
mask = mask[..., None]
|
||||||
|
x = x.masked_fill(~mask, 0.0)
|
||||||
|
|
||||||
|
x = x.permute(0, 2, 1)
|
||||||
|
x = F.pad(x, (self.kernel_size - 1, 0, 0, 0))
|
||||||
|
x = self.conv1(x)
|
||||||
|
x = F.pad(x, (self.kernel_size - 1, 0, 0, 0))
|
||||||
|
x = self.conv2(x)
|
||||||
|
out = x.permute(0, 2, 1)
|
||||||
|
|
||||||
|
if mask is not None:
|
||||||
|
out = out.masked_fill(~mask, 0.0)
|
||||||
|
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
# rotary positional embedding related
|
||||||
|
|
||||||
|
|
||||||
|
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, theta_rescale_factor=1.0):
|
||||||
|
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
|
||||||
|
# has some connection to NTK literature
|
||||||
|
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
|
||||||
|
# https://github.com/lucidrains/rotary-embedding-torch/blob/main/rotary_embedding_torch/rotary_embedding_torch.py
|
||||||
|
theta *= theta_rescale_factor ** (dim / (dim - 2))
|
||||||
|
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
||||||
|
t = torch.arange(end, device=freqs.device) # type: ignore
|
||||||
|
freqs = torch.outer(t, freqs).float() # type: ignore
|
||||||
|
freqs_cos = torch.cos(freqs) # real part
|
||||||
|
freqs_sin = torch.sin(freqs) # imaginary part
|
||||||
|
return torch.cat([freqs_cos, freqs_sin], dim=-1)
|
||||||
|
|
||||||
|
|
||||||
|
def get_pos_embed_indices(start, length, max_pos, scale=1.0):
|
||||||
|
# length = length if isinstance(length, int) else length.max()
|
||||||
|
scale = scale * torch.ones_like(start, dtype=torch.float32) # in case scale is a scalar
|
||||||
|
pos = (
|
||||||
|
start.unsqueeze(1)
|
||||||
|
+ (torch.arange(length, device=start.device, dtype=torch.float32).unsqueeze(0) * scale.unsqueeze(1)).long()
|
||||||
|
)
|
||||||
|
# avoid extra long error.
|
||||||
|
pos = torch.where(pos < max_pos, pos, max_pos - 1)
|
||||||
|
return pos
|
||||||
|
|
||||||
|
|
||||||
|
# Global Response Normalization layer (Instance Normalization ?)
|
||||||
|
|
||||||
|
|
||||||
|
class GRN(nn.Module):
|
||||||
|
def __init__(self, dim):
|
||||||
|
super().__init__()
|
||||||
|
self.gamma = nn.Parameter(torch.zeros(1, 1, dim))
|
||||||
|
self.beta = nn.Parameter(torch.zeros(1, 1, dim))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
Gx = torch.norm(x, p=2, dim=1, keepdim=True)
|
||||||
|
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
|
||||||
|
return self.gamma * (x * Nx) + self.beta + x
|
||||||
|
|
||||||
|
|
||||||
|
# ConvNeXt-V2 Block https://github.com/facebookresearch/ConvNeXt-V2/blob/main/models/convnextv2.py
|
||||||
|
# ref: https://github.com/bfs18/e2_tts/blob/main/rfwave/modules.py#L108
|
||||||
|
|
||||||
|
|
||||||
|
class ConvNeXtV2Block(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
dim: int,
|
||||||
|
intermediate_dim: int,
|
||||||
|
dilation: int = 1,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
padding = (dilation * (7 - 1)) // 2
|
||||||
|
self.dwconv = nn.Conv1d(
|
||||||
|
dim, dim, kernel_size=7, padding=padding, groups=dim, dilation=dilation
|
||||||
|
) # depthwise conv
|
||||||
|
self.norm = nn.LayerNorm(dim, eps=1e-6)
|
||||||
|
self.pwconv1 = nn.Linear(dim, intermediate_dim) # pointwise/1x1 convs, implemented with linear layers
|
||||||
|
self.act = nn.GELU()
|
||||||
|
self.grn = GRN(intermediate_dim)
|
||||||
|
self.pwconv2 = nn.Linear(intermediate_dim, dim)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
residual = x
|
||||||
|
x = x.transpose(1, 2) # b n d -> b d n
|
||||||
|
x = self.dwconv(x)
|
||||||
|
x = x.transpose(1, 2) # b d n -> b n d
|
||||||
|
x = self.norm(x)
|
||||||
|
x = self.pwconv1(x)
|
||||||
|
x = self.act(x)
|
||||||
|
x = self.grn(x)
|
||||||
|
x = self.pwconv2(x)
|
||||||
|
return residual + x
|
||||||
|
|
||||||
|
|
||||||
|
# AdaLayerNormZero
|
||||||
|
# return with modulated x for attn input, and params for later mlp modulation
|
||||||
|
|
||||||
|
|
||||||
|
class AdaLayerNormZero(nn.Module):
|
||||||
|
def __init__(self, dim):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.silu = nn.SiLU()
|
||||||
|
self.linear = nn.Linear(dim, dim * 6)
|
||||||
|
|
||||||
|
self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
||||||
|
|
||||||
|
def forward(self, x, emb=None):
|
||||||
|
emb = self.linear(self.silu(emb))
|
||||||
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = torch.chunk(emb, 6, dim=1)
|
||||||
|
|
||||||
|
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
|
||||||
|
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
||||||
|
|
||||||
|
|
||||||
|
# AdaLayerNormZero for final layer
|
||||||
|
# return only with modulated x for attn input, cuz no more mlp modulation
|
||||||
|
|
||||||
|
|
||||||
|
class AdaLayerNormZero_Final(nn.Module):
|
||||||
|
def __init__(self, dim):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.silu = nn.SiLU()
|
||||||
|
self.linear = nn.Linear(dim, dim * 2)
|
||||||
|
|
||||||
|
self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
||||||
|
|
||||||
|
def forward(self, x, emb):
|
||||||
|
emb = self.linear(self.silu(emb))
|
||||||
|
scale, shift = torch.chunk(emb, 2, dim=1)
|
||||||
|
|
||||||
|
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
# FeedForward
|
||||||
|
|
||||||
|
|
||||||
|
class FeedForward(nn.Module):
|
||||||
|
def __init__(self, dim, dim_out=None, mult=4, dropout=0.0, approximate: str = "none"):
|
||||||
|
super().__init__()
|
||||||
|
inner_dim = int(dim * mult)
|
||||||
|
dim_out = dim_out if dim_out is not None else dim
|
||||||
|
|
||||||
|
activation = nn.GELU(approximate=approximate)
|
||||||
|
project_in = nn.Sequential(nn.Linear(dim, inner_dim), activation)
|
||||||
|
self.ff = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.ff(x)
|
||||||
|
|
||||||
|
|
||||||
|
# Attention with possible joint part
|
||||||
|
# modified from diffusers/src/diffusers/models/attention_processor.py
|
||||||
|
|
||||||
|
|
||||||
|
class Attention(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
processor: JointAttnProcessor | AttnProcessor,
|
||||||
|
dim: int,
|
||||||
|
heads: int = 8,
|
||||||
|
dim_head: int = 64,
|
||||||
|
dropout: float = 0.0,
|
||||||
|
context_dim: Optional[int] = None, # if not None -> joint attention
|
||||||
|
context_pre_only=None,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
if not hasattr(F, "scaled_dot_product_attention"):
|
||||||
|
raise ImportError("Attention equires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
||||||
|
|
||||||
|
self.processor = processor
|
||||||
|
|
||||||
|
self.dim = dim
|
||||||
|
self.heads = heads
|
||||||
|
self.inner_dim = dim_head * heads
|
||||||
|
self.dropout = dropout
|
||||||
|
|
||||||
|
self.context_dim = context_dim
|
||||||
|
self.context_pre_only = context_pre_only
|
||||||
|
|
||||||
|
self.to_q = nn.Linear(dim, self.inner_dim)
|
||||||
|
self.to_k = nn.Linear(dim, self.inner_dim)
|
||||||
|
self.to_v = nn.Linear(dim, self.inner_dim)
|
||||||
|
|
||||||
|
if self.context_dim is not None:
|
||||||
|
self.to_k_c = nn.Linear(context_dim, self.inner_dim)
|
||||||
|
self.to_v_c = nn.Linear(context_dim, self.inner_dim)
|
||||||
|
if self.context_pre_only is not None:
|
||||||
|
self.to_q_c = nn.Linear(context_dim, self.inner_dim)
|
||||||
|
|
||||||
|
self.to_out = nn.ModuleList([])
|
||||||
|
self.to_out.append(nn.Linear(self.inner_dim, dim))
|
||||||
|
self.to_out.append(nn.Dropout(dropout))
|
||||||
|
|
||||||
|
if self.context_pre_only is not None and not self.context_pre_only:
|
||||||
|
self.to_out_c = nn.Linear(self.inner_dim, dim)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
x: float["b n d"], # noised input x # noqa: F722
|
||||||
|
c: float["b n d"] = None, # context c # noqa: F722
|
||||||
|
mask: bool["b n"] | None = None, # noqa: F722
|
||||||
|
rope=None, # rotary position embedding for x
|
||||||
|
c_rope=None, # rotary position embedding for c
|
||||||
|
) -> torch.Tensor:
|
||||||
|
if c is not None:
|
||||||
|
return self.processor(self, x, c=c, mask=mask, rope=rope, c_rope=c_rope)
|
||||||
|
else:
|
||||||
|
return self.processor(self, x, mask=mask, rope=rope)
|
||||||
|
|
||||||
|
|
||||||
|
# Attention processor
|
||||||
|
|
||||||
|
|
||||||
|
class AttnProcessor:
|
||||||
|
def __init__(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def __call__(
|
||||||
|
self,
|
||||||
|
attn: Attention,
|
||||||
|
x: float["b n d"], # noised input x # noqa: F722
|
||||||
|
mask: bool["b n"] | None = None, # noqa: F722
|
||||||
|
rope=None, # rotary position embedding
|
||||||
|
) -> torch.FloatTensor:
|
||||||
|
batch_size = x.shape[0]
|
||||||
|
|
||||||
|
# `sample` projections.
|
||||||
|
query = attn.to_q(x)
|
||||||
|
key = attn.to_k(x)
|
||||||
|
value = attn.to_v(x)
|
||||||
|
|
||||||
|
# apply rotary position embedding
|
||||||
|
if rope is not None:
|
||||||
|
freqs, xpos_scale = rope
|
||||||
|
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
|
||||||
|
|
||||||
|
query = apply_rotary_pos_emb(query, freqs, q_xpos_scale)
|
||||||
|
key = apply_rotary_pos_emb(key, freqs, k_xpos_scale)
|
||||||
|
|
||||||
|
# attention
|
||||||
|
inner_dim = key.shape[-1]
|
||||||
|
head_dim = inner_dim // attn.heads
|
||||||
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||||
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||||
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||||
|
|
||||||
|
# mask. e.g. inference got a batch with different target durations, mask out the padding
|
||||||
|
if mask is not None:
|
||||||
|
attn_mask = mask
|
||||||
|
if attn_mask.dim() == 2:
|
||||||
|
attn_mask = attn_mask.unsqueeze(1).unsqueeze(1) # 'b n -> b 1 1 n'
|
||||||
|
attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2])
|
||||||
|
else:
|
||||||
|
attn_mask = None
|
||||||
|
|
||||||
|
x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False)
|
||||||
|
x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||||
|
x = x.to(query.dtype)
|
||||||
|
|
||||||
|
# linear proj
|
||||||
|
x = attn.to_out[0](x)
|
||||||
|
# dropout
|
||||||
|
x = attn.to_out[1](x)
|
||||||
|
|
||||||
|
if mask is not None:
|
||||||
|
if mask.dim() == 2:
|
||||||
|
mask = mask.unsqueeze(-1)
|
||||||
|
else:
|
||||||
|
mask = mask[:, 0, -1].unsqueeze(-1)
|
||||||
|
x = x.masked_fill(~mask, 0.0)
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
# Joint Attention processor for MM-DiT
|
||||||
|
# modified from diffusers/src/diffusers/models/attention_processor.py
|
||||||
|
|
||||||
|
|
||||||
|
class JointAttnProcessor:
|
||||||
|
def __init__(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def __call__(
|
||||||
|
self,
|
||||||
|
attn: Attention,
|
||||||
|
x: float["b n d"], # noised input x # noqa: F722
|
||||||
|
c: float["b nt d"] = None, # context c, here text # noqa: F722
|
||||||
|
mask: bool["b n"] | None = None, # noqa: F722
|
||||||
|
rope=None, # rotary position embedding for x
|
||||||
|
c_rope=None, # rotary position embedding for c
|
||||||
|
) -> torch.FloatTensor:
|
||||||
|
residual = x
|
||||||
|
|
||||||
|
batch_size = c.shape[0]
|
||||||
|
|
||||||
|
# `sample` projections.
|
||||||
|
query = attn.to_q(x)
|
||||||
|
key = attn.to_k(x)
|
||||||
|
value = attn.to_v(x)
|
||||||
|
|
||||||
|
# `context` projections.
|
||||||
|
c_query = attn.to_q_c(c)
|
||||||
|
c_key = attn.to_k_c(c)
|
||||||
|
c_value = attn.to_v_c(c)
|
||||||
|
|
||||||
|
# apply rope for context and noised input independently
|
||||||
|
if rope is not None:
|
||||||
|
freqs, xpos_scale = rope
|
||||||
|
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
|
||||||
|
query = apply_rotary_pos_emb(query, freqs, q_xpos_scale)
|
||||||
|
key = apply_rotary_pos_emb(key, freqs, k_xpos_scale)
|
||||||
|
if c_rope is not None:
|
||||||
|
freqs, xpos_scale = c_rope
|
||||||
|
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
|
||||||
|
c_query = apply_rotary_pos_emb(c_query, freqs, q_xpos_scale)
|
||||||
|
c_key = apply_rotary_pos_emb(c_key, freqs, k_xpos_scale)
|
||||||
|
|
||||||
|
# attention
|
||||||
|
query = torch.cat([query, c_query], dim=1)
|
||||||
|
key = torch.cat([key, c_key], dim=1)
|
||||||
|
value = torch.cat([value, c_value], dim=1)
|
||||||
|
|
||||||
|
inner_dim = key.shape[-1]
|
||||||
|
head_dim = inner_dim // attn.heads
|
||||||
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||||
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||||
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||||
|
|
||||||
|
# mask. e.g. inference got a batch with different target durations, mask out the padding
|
||||||
|
if mask is not None:
|
||||||
|
attn_mask = F.pad(mask, (0, c.shape[1]), value=True) # no mask for c (text)
|
||||||
|
attn_mask = attn_mask.unsqueeze(1).unsqueeze(1) # 'b n -> b 1 1 n'
|
||||||
|
attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2])
|
||||||
|
else:
|
||||||
|
attn_mask = None
|
||||||
|
|
||||||
|
x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False)
|
||||||
|
x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||||
|
x = x.to(query.dtype)
|
||||||
|
|
||||||
|
# Split the attention outputs.
|
||||||
|
x, c = (
|
||||||
|
x[:, : residual.shape[1]],
|
||||||
|
x[:, residual.shape[1] :],
|
||||||
|
)
|
||||||
|
|
||||||
|
# linear proj
|
||||||
|
x = attn.to_out[0](x)
|
||||||
|
# dropout
|
||||||
|
x = attn.to_out[1](x)
|
||||||
|
if not attn.context_pre_only:
|
||||||
|
c = attn.to_out_c(c)
|
||||||
|
|
||||||
|
if mask is not None:
|
||||||
|
mask = mask.unsqueeze(-1)
|
||||||
|
x = x.masked_fill(~mask, 0.0)
|
||||||
|
# c = c.masked_fill(~mask, 0.) # no mask for c (text)
|
||||||
|
|
||||||
|
return x, c
|
||||||
|
|
||||||
|
|
||||||
|
# DiT Block
|
||||||
|
|
||||||
|
|
||||||
|
class DiTBlock(nn.Module):
|
||||||
|
def __init__(self, dim, heads, dim_head, ff_mult=4, dropout=0.1):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.attn_norm = AdaLayerNormZero(dim)
|
||||||
|
self.attn = Attention(
|
||||||
|
processor=AttnProcessor(),
|
||||||
|
dim=dim,
|
||||||
|
heads=heads,
|
||||||
|
dim_head=dim_head,
|
||||||
|
dropout=dropout,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.ff_norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
||||||
|
self.ff = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
|
||||||
|
|
||||||
|
def forward(self, x, t, mask=None, rope=None): # x: noised input, t: time embedding
|
||||||
|
# pre-norm & modulation for attention input
|
||||||
|
norm, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.attn_norm(x, emb=t)
|
||||||
|
|
||||||
|
# attention
|
||||||
|
attn_output = self.attn(x=norm, mask=mask, rope=rope)
|
||||||
|
|
||||||
|
# process attention output for input x
|
||||||
|
x = x + gate_msa.unsqueeze(1) * attn_output
|
||||||
|
|
||||||
|
ff_norm = self.ff_norm(x) * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
||||||
|
ff_output = self.ff(ff_norm)
|
||||||
|
x = x + gate_mlp.unsqueeze(1) * ff_output
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
# MMDiT Block https://arxiv.org/abs/2403.03206
|
||||||
|
|
||||||
|
|
||||||
|
class MMDiTBlock(nn.Module):
|
||||||
|
r"""
|
||||||
|
modified from diffusers/src/diffusers/models/attention.py
|
||||||
|
|
||||||
|
notes.
|
||||||
|
_c: context related. text, cond, etc. (left part in sd3 fig2.b)
|
||||||
|
_x: noised input related. (right part)
|
||||||
|
context_pre_only: last layer only do prenorm + modulation cuz no more ffn
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, dim, heads, dim_head, ff_mult=4, dropout=0.1, context_pre_only=False):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.context_pre_only = context_pre_only
|
||||||
|
|
||||||
|
self.attn_norm_c = AdaLayerNormZero_Final(dim) if context_pre_only else AdaLayerNormZero(dim)
|
||||||
|
self.attn_norm_x = AdaLayerNormZero(dim)
|
||||||
|
self.attn = Attention(
|
||||||
|
processor=JointAttnProcessor(),
|
||||||
|
dim=dim,
|
||||||
|
heads=heads,
|
||||||
|
dim_head=dim_head,
|
||||||
|
dropout=dropout,
|
||||||
|
context_dim=dim,
|
||||||
|
context_pre_only=context_pre_only,
|
||||||
|
)
|
||||||
|
|
||||||
|
if not context_pre_only:
|
||||||
|
self.ff_norm_c = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
||||||
|
self.ff_c = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
|
||||||
|
else:
|
||||||
|
self.ff_norm_c = None
|
||||||
|
self.ff_c = None
|
||||||
|
self.ff_norm_x = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
||||||
|
self.ff_x = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
|
||||||
|
|
||||||
|
def forward(self, x, c, t, mask=None, rope=None, c_rope=None): # x: noised input, c: context, t: time embedding
|
||||||
|
# pre-norm & modulation for attention input
|
||||||
|
if self.context_pre_only:
|
||||||
|
norm_c = self.attn_norm_c(c, t)
|
||||||
|
else:
|
||||||
|
norm_c, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.attn_norm_c(c, emb=t)
|
||||||
|
norm_x, x_gate_msa, x_shift_mlp, x_scale_mlp, x_gate_mlp = self.attn_norm_x(x, emb=t)
|
||||||
|
|
||||||
|
# attention
|
||||||
|
x_attn_output, c_attn_output = self.attn(x=norm_x, c=norm_c, mask=mask, rope=rope, c_rope=c_rope)
|
||||||
|
|
||||||
|
# process attention output for context c
|
||||||
|
if self.context_pre_only:
|
||||||
|
c = None
|
||||||
|
else: # if not last layer
|
||||||
|
c = c + c_gate_msa.unsqueeze(1) * c_attn_output
|
||||||
|
|
||||||
|
norm_c = self.ff_norm_c(c) * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
||||||
|
c_ff_output = self.ff_c(norm_c)
|
||||||
|
c = c + c_gate_mlp.unsqueeze(1) * c_ff_output
|
||||||
|
|
||||||
|
# process attention output for input x
|
||||||
|
x = x + x_gate_msa.unsqueeze(1) * x_attn_output
|
||||||
|
|
||||||
|
norm_x = self.ff_norm_x(x) * (1 + x_scale_mlp[:, None]) + x_shift_mlp[:, None]
|
||||||
|
x_ff_output = self.ff_x(norm_x)
|
||||||
|
x = x + x_gate_mlp.unsqueeze(1) * x_ff_output
|
||||||
|
|
||||||
|
return c, x
|
||||||
|
|
||||||
|
|
||||||
|
# time step conditioning embedding
|
||||||
|
|
||||||
|
|
||||||
|
class TimestepEmbedding(nn.Module):
|
||||||
|
def __init__(self, dim, freq_embed_dim=256):
|
||||||
|
super().__init__()
|
||||||
|
self.time_embed = SinusPositionEmbedding(freq_embed_dim)
|
||||||
|
self.time_mlp = nn.Sequential(nn.Linear(freq_embed_dim, dim), nn.SiLU(), nn.Linear(dim, dim))
|
||||||
|
|
||||||
|
def forward(self, timestep: float["b"]): # noqa: F821
|
||||||
|
time_hidden = self.time_embed(timestep)
|
||||||
|
time_hidden = time_hidden.to(timestep.dtype)
|
||||||
|
time = self.time_mlp(time_hidden) # b d
|
||||||
|
return time
|
||||||
@@ -37,14 +37,11 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
|||||||
'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
|
'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
|
||||||
'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
|
'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
|
||||||
'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
|
'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
|
||||||
'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
|
'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}}):
|
||||||
mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050,
|
|
||||||
'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
|
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.input_size = input_size
|
self.input_size = input_size
|
||||||
self.output_size = output_size
|
self.output_size = output_size
|
||||||
self.decoder_conf = decoder_conf
|
self.decoder_conf = decoder_conf
|
||||||
self.mel_feat_conf = mel_feat_conf
|
|
||||||
self.vocab_size = vocab_size
|
self.vocab_size = vocab_size
|
||||||
self.output_type = output_type
|
self.output_type = output_type
|
||||||
self.input_frame_rate = input_frame_rate
|
self.input_frame_rate = input_frame_rate
|
||||||
@@ -165,14 +162,11 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
|
|||||||
'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
|
'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
|
||||||
'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
|
'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
|
||||||
'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
|
'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
|
||||||
'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
|
'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}}):
|
||||||
mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050,
|
|
||||||
'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
|
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.input_size = input_size
|
self.input_size = input_size
|
||||||
self.output_size = output_size
|
self.output_size = output_size
|
||||||
self.decoder_conf = decoder_conf
|
self.decoder_conf = decoder_conf
|
||||||
self.mel_feat_conf = mel_feat_conf
|
|
||||||
self.vocab_size = vocab_size
|
self.vocab_size = vocab_size
|
||||||
self.output_type = output_type
|
self.output_type = output_type
|
||||||
self.input_frame_rate = input_frame_rate
|
self.input_frame_rate = input_frame_rate
|
||||||
@@ -279,3 +273,158 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
|
|||||||
feat = feat[:, :, mel_len1:]
|
feat = feat[:, :, mel_len1:]
|
||||||
assert feat.shape[2] == mel_len2
|
assert feat.shape[2] == mel_len2
|
||||||
return feat.float(), None
|
return feat.float(), None
|
||||||
|
|
||||||
|
|
||||||
|
class CausalMaskedDiffWithDiT(torch.nn.Module):
|
||||||
|
def __init__(self,
|
||||||
|
input_size: int = 512,
|
||||||
|
output_size: int = 80,
|
||||||
|
spk_embed_dim: int = 192,
|
||||||
|
output_type: str = "mel",
|
||||||
|
vocab_size: int = 4096,
|
||||||
|
input_frame_rate: int = 50,
|
||||||
|
only_mask_loss: bool = True,
|
||||||
|
token_mel_ratio: int = 2,
|
||||||
|
pre_lookahead_len: int = 3,
|
||||||
|
pre_lookahead_layer: torch.nn.Module = None,
|
||||||
|
decoder: torch.nn.Module = None,
|
||||||
|
decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1,
|
||||||
|
'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
|
||||||
|
'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
|
||||||
|
'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
|
||||||
|
'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}}):
|
||||||
|
super().__init__()
|
||||||
|
self.input_size = input_size
|
||||||
|
self.output_size = output_size
|
||||||
|
self.decoder_conf = decoder_conf
|
||||||
|
self.vocab_size = vocab_size
|
||||||
|
self.output_type = output_type
|
||||||
|
self.input_frame_rate = input_frame_rate
|
||||||
|
logging.info(f"input frame rate={self.input_frame_rate}")
|
||||||
|
self.input_embedding = nn.Embedding(vocab_size, input_size)
|
||||||
|
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
|
||||||
|
self.pre_lookahead_len = pre_lookahead_len
|
||||||
|
self.pre_lookahead_layer = pre_lookahead_layer
|
||||||
|
self.decoder = decoder
|
||||||
|
self.only_mask_loss = only_mask_loss
|
||||||
|
self.token_mel_ratio = token_mel_ratio
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
batch: dict,
|
||||||
|
device: torch.device,
|
||||||
|
) -> Dict[str, Optional[torch.Tensor]]:
|
||||||
|
token = batch['speech_token'].to(device)
|
||||||
|
token_len = batch['speech_token_len'].to(device)
|
||||||
|
feat = batch['speech_feat'].to(device)
|
||||||
|
feat_len = batch['speech_feat_len'].to(device)
|
||||||
|
embedding = batch['embedding'].to(device)
|
||||||
|
|
||||||
|
# NOTE unified training, static_chunk_size > 0 or = 0
|
||||||
|
streaming = True if random.random() < 0.5 else False
|
||||||
|
|
||||||
|
# xvec projection
|
||||||
|
embedding = F.normalize(embedding, dim=1)
|
||||||
|
embedding = self.spk_embed_affine_layer(embedding)
|
||||||
|
|
||||||
|
# concat text and prompt_text
|
||||||
|
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device)
|
||||||
|
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
||||||
|
|
||||||
|
# text encode
|
||||||
|
h, h_lengths = self.encoder(token, token_len, streaming=streaming)
|
||||||
|
h = self.encoder_proj(h)
|
||||||
|
|
||||||
|
# get conditions
|
||||||
|
conds = torch.zeros(feat.shape, device=token.device)
|
||||||
|
for i, j in enumerate(feat_len):
|
||||||
|
if random.random() < 0.5:
|
||||||
|
continue
|
||||||
|
index = random.randint(0, int(0.3 * j))
|
||||||
|
conds[i, :index] = feat[i, :index]
|
||||||
|
conds = conds.transpose(1, 2)
|
||||||
|
|
||||||
|
mask = (~make_pad_mask(h_lengths.sum(dim=-1).squeeze(dim=1))).to(h)
|
||||||
|
loss, _ = self.decoder.compute_loss(
|
||||||
|
feat.transpose(1, 2).contiguous(),
|
||||||
|
mask.unsqueeze(1),
|
||||||
|
h.transpose(1, 2).contiguous(),
|
||||||
|
embedding,
|
||||||
|
cond=conds,
|
||||||
|
streaming=streaming,
|
||||||
|
)
|
||||||
|
return {'loss': loss}
|
||||||
|
|
||||||
|
@torch.inference_mode()
|
||||||
|
def inference(self,
|
||||||
|
token,
|
||||||
|
token_len,
|
||||||
|
prompt_token,
|
||||||
|
prompt_token_len,
|
||||||
|
prompt_feat,
|
||||||
|
prompt_feat_len,
|
||||||
|
embedding,
|
||||||
|
streaming,
|
||||||
|
finalize):
|
||||||
|
assert token.shape[0] == 1
|
||||||
|
# xvec projection
|
||||||
|
embedding = F.normalize(embedding, dim=1)
|
||||||
|
embedding = self.spk_embed_affine_layer(embedding)
|
||||||
|
|
||||||
|
# concat text and prompt_text
|
||||||
|
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
||||||
|
mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
|
||||||
|
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
||||||
|
|
||||||
|
# text encode
|
||||||
|
if finalize is True:
|
||||||
|
h = self.pre_lookahead_layer(token)
|
||||||
|
else:
|
||||||
|
h = self.pre_lookahead_layer(token[:, :-self.pre_lookahead_len], context=token[:, -self.pre_lookahead_len:])
|
||||||
|
h = h.repeat_interleave(self.token_mel_ratio, dim=1)
|
||||||
|
mel_len1, mel_len2 = prompt_feat.shape[1], h.shape[1] - prompt_feat.shape[1]
|
||||||
|
|
||||||
|
# get conditions
|
||||||
|
conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device).to(h.dtype)
|
||||||
|
conds[:, :mel_len1] = prompt_feat
|
||||||
|
conds = conds.transpose(1, 2)
|
||||||
|
|
||||||
|
mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
|
||||||
|
feat, _ = self.decoder(
|
||||||
|
mu=h.transpose(1, 2).contiguous(),
|
||||||
|
mask=mask.unsqueeze(1),
|
||||||
|
spks=embedding,
|
||||||
|
cond=conds,
|
||||||
|
n_timesteps=10,
|
||||||
|
streaming=streaming
|
||||||
|
)
|
||||||
|
feat = feat[:, :, mel_len1:]
|
||||||
|
assert feat.shape[2] == mel_len2
|
||||||
|
return feat.float(), None
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
torch.backends.cudnn.deterministic = True
|
||||||
|
torch.backends.cudnn.benchmark = False
|
||||||
|
from hyperpyyaml import load_hyperpyyaml
|
||||||
|
with open('./pretrained_models/CosyVoice3-0.5B/cosyvoice3.yaml', 'r') as f:
|
||||||
|
configs = load_hyperpyyaml(f, overrides={'llm': None, 'hift': None})
|
||||||
|
model = configs['flow']
|
||||||
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
max_len = 10 * model.decoder.estimator.static_chunk_size
|
||||||
|
chunk_size = model.decoder.estimator.static_chunk_size
|
||||||
|
context_size = model.pre_lookahead_layer.pre_lookahead_len
|
||||||
|
token = torch.randint(0, 6561, size=(1, max_len)).to(device)
|
||||||
|
token_len = torch.tensor([max_len]).to(device)
|
||||||
|
prompt_token = torch.randint(0, 6561, size=(1, chunk_size)).to(device)
|
||||||
|
prompt_token_len = torch.tensor([chunk_size]).to(device)
|
||||||
|
prompt_feat = torch.rand(1, chunk_size * 2, 80).to(device)
|
||||||
|
prompt_feat_len = torch.tensor([chunk_size * 2]).to(device)
|
||||||
|
prompt_embedding = torch.rand(1, 192).to(device)
|
||||||
|
pred_gt, _ = model.inference(token, token_len, prompt_token, prompt_token_len, prompt_feat, prompt_feat_len, prompt_embedding, streaming=True, finalize=True)
|
||||||
|
for i in range(0, max_len, chunk_size):
|
||||||
|
finalize = True if i + chunk_size + context_size >= max_len else False
|
||||||
|
pred_chunk, _ = model.inference(token[:, :i + chunk_size + context_size], torch.tensor([token[:, :i + chunk_size + context_size].shape[1]]).to(device), prompt_token, prompt_token_len, prompt_feat, prompt_feat_len, prompt_embedding, streaming=True, finalize=finalize)
|
||||||
|
pred_chunk = pred_chunk[:, :, i * model.token_mel_ratio:]
|
||||||
|
print((pred_gt[:, :, i * model.token_mel_ratio: i * model.token_mel_ratio + pred_chunk.shape[2]] - pred_chunk).abs().max().item())
|
||||||
@@ -736,7 +736,7 @@ if __name__ == '__main__':
|
|||||||
model.to(device)
|
model.to(device)
|
||||||
model.eval()
|
model.eval()
|
||||||
max_len, chunk_size, context_size = 300, 30, 8
|
max_len, chunk_size, context_size = 300, 30, 8
|
||||||
mel = torch.rand(1, 80, max_len)
|
mel = torch.rand(1, 80, max_len).to(device)
|
||||||
pred_gt, _ = model.inference(mel)
|
pred_gt, _ = model.inference(mel)
|
||||||
for i in range(0, max_len, chunk_size):
|
for i in range(0, max_len, chunk_size):
|
||||||
finalize = True if i + chunk_size + context_size >= max_len else False
|
finalize = True if i + chunk_size + context_size >= max_len else False
|
||||||
|
|||||||
@@ -64,17 +64,18 @@ class Upsample1D(nn.Module):
|
|||||||
|
|
||||||
|
|
||||||
class PreLookaheadLayer(nn.Module):
|
class PreLookaheadLayer(nn.Module):
|
||||||
def __init__(self, channels: int, pre_lookahead_len: int = 1):
|
def __init__(self, in_channels: int, channels: int, pre_lookahead_len: int = 1):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
self.in_channels = in_channels
|
||||||
self.channels = channels
|
self.channels = channels
|
||||||
self.pre_lookahead_len = pre_lookahead_len
|
self.pre_lookahead_len = pre_lookahead_len
|
||||||
self.conv1 = nn.Conv1d(
|
self.conv1 = nn.Conv1d(
|
||||||
channels, channels,
|
in_channels, channels,
|
||||||
kernel_size=pre_lookahead_len + 1,
|
kernel_size=pre_lookahead_len + 1,
|
||||||
stride=1, padding=0,
|
stride=1, padding=0,
|
||||||
)
|
)
|
||||||
self.conv2 = nn.Conv1d(
|
self.conv2 = nn.Conv1d(
|
||||||
channels, channels,
|
channels, in_channels,
|
||||||
kernel_size=3, stride=1, padding=0,
|
kernel_size=3, stride=1, padding=0,
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -199,7 +200,7 @@ class UpsampleConformerEncoder(torch.nn.Module):
|
|||||||
# convolution module definition
|
# convolution module definition
|
||||||
convolution_layer_args = (output_size, cnn_module_kernel, activation,
|
convolution_layer_args = (output_size, cnn_module_kernel, activation,
|
||||||
cnn_module_norm, causal)
|
cnn_module_norm, causal)
|
||||||
self.pre_lookahead_layer = PreLookaheadLayer(channels=512, pre_lookahead_len=3)
|
self.pre_lookahead_layer = PreLookaheadLayer(in_channels=512, channels=512, pre_lookahead_len=3)
|
||||||
self.encoders = torch.nn.ModuleList([
|
self.encoders = torch.nn.ModuleList([
|
||||||
ConformerEncoderLayer(
|
ConformerEncoderLayer(
|
||||||
output_size,
|
output_size,
|
||||||
|
|||||||
Reference in New Issue
Block a user