fix hifigan init bug

This commit is contained in:
lyuxiang.lx
2024-10-22 10:27:36 +08:00
parent d1f7c1c9d7
commit d554db7e32
4 changed files with 94 additions and 53 deletions

View File

@@ -110,38 +110,60 @@ def wrap_cuda_model(args, model):
def init_optimizer_and_scheduler(args, configs, model, gan):
if configs['train_conf']['optim'] == 'adam':
optimizer = optim.Adam(model.parameters(), **configs['train_conf']['optim_conf'])
elif configs['train_conf']['optim'] == 'adamw':
optimizer = optim.AdamW(model.parameters(), **configs['train_conf']['optim_conf'])
if gan is False:
if configs['train_conf']['optim'] == 'adam':
optimizer = optim.Adam(model.parameters(), **configs['train_conf']['optim_conf'])
elif configs['train_conf']['optim'] == 'adamw':
optimizer = optim.AdamW(model.parameters(), **configs['train_conf']['optim_conf'])
else:
raise ValueError("unknown optimizer: " + configs['train_conf'])
if configs['train_conf']['scheduler'] == 'warmuplr':
scheduler_type = WarmupLR
scheduler = WarmupLR(optimizer, **configs['train_conf']['scheduler_conf'])
elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing':
scheduler_type = NoamHoldAnnealing
scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf'])
elif configs['train_conf']['scheduler'] == 'constantlr':
scheduler_type = ConstantLR
scheduler = ConstantLR(optimizer)
else:
raise ValueError("unknown scheduler: " + configs['train_conf'])
# use deepspeed optimizer for speedup
if args.train_engine == "deepspeed":
def scheduler(opt):
return scheduler_type(opt, **configs['train_conf']['scheduler_conf'])
model, optimizer, _, scheduler = deepspeed.initialize(
args=args,
model=model,
optimizer=None,
lr_scheduler=scheduler,
model_parameters=model.parameters())
optimizer_d, scheduler_d = None, None
else:
raise ValueError("unknown optimizer: " + configs['train_conf'])
# currently we wrap generator and discriminator in one model, so we cannot use deepspeed
if configs['train_conf']['optim'] == 'adam':
optimizer = optim.Adam(model.module.generator.parameters(), **configs['train_conf']['optim_conf'])
elif configs['train_conf']['optim'] == 'adamw':
optimizer = optim.AdamW(model.module.generator.parameters(), **configs['train_conf']['optim_conf'])
else:
raise ValueError("unknown optimizer: " + configs['train_conf'])
if configs['train_conf']['scheduler'] == 'warmuplr':
scheduler_type = WarmupLR
scheduler = WarmupLR(optimizer, **configs['train_conf']['scheduler_conf'])
elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing':
scheduler_type = NoamHoldAnnealing
scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf'])
elif configs['train_conf']['scheduler'] == 'constantlr':
scheduler_type = ConstantLR
scheduler = ConstantLR(optimizer)
else:
raise ValueError("unknown scheduler: " + configs['train_conf'])
if configs['train_conf']['scheduler'] == 'warmuplr':
scheduler_type = WarmupLR
scheduler = WarmupLR(optimizer, **configs['train_conf']['scheduler_conf'])
elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing':
scheduler_type = NoamHoldAnnealing
scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf'])
elif configs['train_conf']['scheduler'] == 'constantlr':
scheduler_type = ConstantLR
scheduler = ConstantLR(optimizer)
else:
raise ValueError("unknown scheduler: " + configs['train_conf'])
# use deepspeed optimizer for speedup
if args.train_engine == "deepspeed":
def scheduler(opt):
return scheduler_type(opt, **configs['train_conf']['scheduler_conf'])
model, optimizer, _, scheduler = deepspeed.initialize(
args=args,
model=model,
optimizer=None,
lr_scheduler=scheduler,
model_parameters=model.parameters())
# currently we wrap generator and discriminator in one model, so we cannot use deepspeed
if gan is True:
if configs['train_conf']['optim_d'] == 'adam':
optimizer_d = optim.Adam(model.module.discriminator.parameters(), **configs['train_conf']['optim_conf'])
elif configs['train_conf']['optim_d'] == 'adamw':
@@ -160,8 +182,6 @@ def init_optimizer_and_scheduler(args, configs, model, gan):
scheduler_d = ConstantLR(optimizer_d)
else:
raise ValueError("unknown scheduler: " + configs['train_conf'])
else:
optimizer_d, scheduler_d = None, None
return model, optimizer, scheduler, optimizer_d, scheduler_d
@@ -216,7 +236,7 @@ def cosyvoice_join(group_join, info_dict):
return False
def batch_forward(model, batch, info_dict):
def batch_forward(model, batch, scaler, info_dict):
device = int(os.environ.get('LOCAL_RANK', 0))
dtype = info_dict["dtype"]
@@ -228,7 +248,7 @@ def batch_forward(model, batch, info_dict):
dtype = torch.float32
if info_dict['train_engine'] == 'torch_ddp':
autocast = nullcontext()
autocast = torch.cuda.amp.autocast(enabled=scaler is not None)
else:
autocast = torch.cuda.amp.autocast(enabled=True, dtype=dtype, cache_enabled=False)
@@ -237,27 +257,40 @@ def batch_forward(model, batch, info_dict):
return info_dict
def batch_backward(model, info_dict):
def batch_backward(model, scaler, info_dict):
if info_dict["train_engine"] == "deepspeed":
scaled_loss = model.backward(info_dict['loss_dict']['loss'])
else:
scaled_loss = info_dict['loss_dict']['loss'] / info_dict['accum_grad']
scaled_loss.backward()
if scaler is not None:
scaler.scale(scaled_loss).backward()
else:
scaled_loss.backward()
info_dict['loss_dict']['loss'] = scaled_loss
return info_dict
def update_parameter_and_lr(model, optimizer, scheduler, info_dict):
def update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict):
grad_norm = 0.0
if info_dict['train_engine'] == "deepspeed":
info_dict["is_gradient_accumulation_boundary"] = model.is_gradient_accumulation_boundary()
model.step()
grad_norm = model.get_global_grad_norm()
elif (info_dict['batch_idx'] + 1) % info_dict["accum_grad"] == 0:
grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip'])
if torch.isfinite(grad_norm):
optimizer.step()
# Use mixed precision training
if scaler is not None:
scaler.unscale_(optimizer)
grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip'])
# We don't check grad here since that if the gradient
# has inf/nan values, scaler.step will skip
# optimizer.step().
scaler.step(optimizer)
scaler.update()
else:
grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip'])
if torch.isfinite(grad_norm):
optimizer.step()
optimizer.zero_grad()
scheduler.step()
info_dict["lr"] = optimizer.param_groups[0]['lr']