[debug] support flow cache, for sharper tts_mel output

This commit is contained in:
boji123
2024-09-20 12:35:44 +08:00
parent d49259855b
commit c9acce1482
3 changed files with 34 additions and 9 deletions

View File

@@ -32,7 +32,7 @@ class ConditionalCFM(BASECFM):
self.estimator = estimator
@torch.inference_mode()
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, required_cache_size=0, flow_cache=None):
"""Forward diffusion
Args:
@@ -50,11 +50,26 @@ class ConditionalCFM(BASECFM):
sample: generated mel-spectrogram
shape: (batch_size, n_feats, mel_timesteps)
"""
z = torch.randn_like(mu) * temperature
if flow_cache is not None:
z_cache = flow_cache[0]
mu_cache = flow_cache[1]
z = torch.randn((mu.size(0), mu.size(1), mu.size(2) - z_cache.size(2)), dtype=mu.dtype, device=mu.device) * temperature
z = torch.cat((z_cache, z), dim=2) # [B, 80, T]
mu = torch.cat((mu_cache, mu[..., mu_cache.size(2):]), dim=2) # [B, 80, T]
else:
z = torch.randn_like(mu) * temperature
next_cache_start = max(z.size(2) - required_cache_size, 0)
flow_cache = [
z[..., next_cache_start:],
mu[..., next_cache_start:]
]
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
if self.t_scheduler == 'cosine':
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond)
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), flow_cache
def solve_euler(self, x, t_span, mu, mask, spks, cond):
"""