mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-05 18:09:24 +08:00
Merge pull request #56 from iflamed/fastapi
Add Fastapi server to serve TTS and download script
This commit is contained in:
@@ -26,4 +26,6 @@ tensorboard==2.14.0
|
|||||||
torch==2.0.1
|
torch==2.0.1
|
||||||
torchaudio==2.0.2
|
torchaudio==2.0.2
|
||||||
wget==3.2
|
wget==3.2
|
||||||
|
fastapi==0.111.0
|
||||||
|
fastapi-cli==0.0.4
|
||||||
WeTextProcessing==1.0.3
|
WeTextProcessing==1.0.3
|
||||||
|
|||||||
78
runtime/python/fastapi_client.py
Normal file
78
runtime/python/fastapi_client.py
Normal file
@@ -0,0 +1,78 @@
|
|||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import requests
|
||||||
|
|
||||||
|
def saveResponse(path, response):
|
||||||
|
# 以二进制写入模式打开文件
|
||||||
|
with open(path, 'wb') as file:
|
||||||
|
# 将响应的二进制内容写入文件
|
||||||
|
file.write(response.content)
|
||||||
|
|
||||||
|
def main():
|
||||||
|
api = args.api_base
|
||||||
|
if args.mode == 'sft':
|
||||||
|
url = api + "/api/inference/sft"
|
||||||
|
payload={
|
||||||
|
'tts': args.tts_text,
|
||||||
|
'role': args.spk_id
|
||||||
|
}
|
||||||
|
response = requests.request("POST", url, data=payload)
|
||||||
|
saveResponse(args.tts_wav, response)
|
||||||
|
elif args.mode == 'zero_shot':
|
||||||
|
url = api + "/api/inference/zero-shot"
|
||||||
|
payload={
|
||||||
|
'tts': args.tts_text,
|
||||||
|
'prompt': args.prompt_text
|
||||||
|
}
|
||||||
|
files=[('audio', ('prompt_audio.wav', open(args.prompt_wav,'rb'), 'application/octet-stream'))]
|
||||||
|
response = requests.request("POST", url, data=payload, files=files)
|
||||||
|
saveResponse(args.tts_wav, response)
|
||||||
|
elif args.mode == 'cross_lingual':
|
||||||
|
url = api + "/api/inference/cross-lingual"
|
||||||
|
payload={
|
||||||
|
'tts': args.tts_text,
|
||||||
|
}
|
||||||
|
files=[('audio', ('prompt_audio.wav', open(args.prompt_wav,'rb'), 'application/octet-stream'))]
|
||||||
|
response = requests.request("POST", url, data=payload, files=files)
|
||||||
|
saveResponse(args.tts_wav, response)
|
||||||
|
else:
|
||||||
|
url = api + "/api/inference/instruct"
|
||||||
|
payload = {
|
||||||
|
'tts': args.tts_text,
|
||||||
|
'role': args.spk_id,
|
||||||
|
'instruct': args.instruct_text
|
||||||
|
}
|
||||||
|
response = requests.request("POST", url, data=payload)
|
||||||
|
saveResponse(args.tts_wav, response)
|
||||||
|
logging.info("Response save to {}", args.tts_wav)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--api_base',
|
||||||
|
type=str,
|
||||||
|
default='http://127.0.0.1:6006')
|
||||||
|
parser.add_argument('--mode',
|
||||||
|
default='sft',
|
||||||
|
choices=['sft', 'zero_shot', 'cross_lingual', 'instruct'],
|
||||||
|
help='request mode')
|
||||||
|
parser.add_argument('--tts_text',
|
||||||
|
type=str,
|
||||||
|
default='你好,我是通义千问语音合成大模型,请问有什么可以帮您的吗?')
|
||||||
|
parser.add_argument('--spk_id',
|
||||||
|
type=str,
|
||||||
|
default='中文女')
|
||||||
|
parser.add_argument('--prompt_text',
|
||||||
|
type=str,
|
||||||
|
default='希望你以后能够做的比我还好呦。')
|
||||||
|
parser.add_argument('--prompt_wav',
|
||||||
|
type=str,
|
||||||
|
default='../../zero_shot_prompt.wav')
|
||||||
|
parser.add_argument('--instruct_text',
|
||||||
|
type=str,
|
||||||
|
default='Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.')
|
||||||
|
parser.add_argument('--tts_wav',
|
||||||
|
type=str,
|
||||||
|
default='demo.wav')
|
||||||
|
args = parser.parse_args()
|
||||||
|
prompt_sr, target_sr = 16000, 22050
|
||||||
|
main()
|
||||||
109
runtime/python/fastapi_server.py
Normal file
109
runtime/python/fastapi_server.py
Normal file
@@ -0,0 +1,109 @@
|
|||||||
|
# Set inference model
|
||||||
|
# export MODEL_DIR=pretrained_models/CosyVoice-300M-Instruct
|
||||||
|
# For development
|
||||||
|
# fastapi dev --port 6006 fastapi_server.py
|
||||||
|
# For production deployment
|
||||||
|
# fastapi run --port 6006 fastapi_server.py
|
||||||
|
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import io,time
|
||||||
|
from fastapi import FastAPI, Response, File, UploadFile, Form
|
||||||
|
from fastapi.responses import HTMLResponse
|
||||||
|
from contextlib import asynccontextmanager
|
||||||
|
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||||
|
sys.path.append('{}/../..'.format(ROOT_DIR))
|
||||||
|
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
||||||
|
from cosyvoice.cli.cosyvoice import CosyVoice
|
||||||
|
from cosyvoice.utils.file_utils import load_wav
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torchaudio
|
||||||
|
import logging
|
||||||
|
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
||||||
|
|
||||||
|
class LaunchFailed(Exception):
|
||||||
|
pass
|
||||||
|
|
||||||
|
@asynccontextmanager
|
||||||
|
async def lifespan(app: FastAPI):
|
||||||
|
model_dir = os.getenv("MODEL_DIR", "pretrained_models/CosyVoice-300M-SFT")
|
||||||
|
if model_dir:
|
||||||
|
logging.info("MODEL_DIR is {}", model_dir)
|
||||||
|
app.cosyvoice = CosyVoice('../../'+model_dir)
|
||||||
|
# sft usage
|
||||||
|
logging.info("Avaliable speakers {}", app.cosyvoice.list_avaliable_spks())
|
||||||
|
else:
|
||||||
|
raise LaunchFailed("MODEL_DIR environment must set")
|
||||||
|
yield
|
||||||
|
|
||||||
|
app = FastAPI(lifespan=lifespan)
|
||||||
|
|
||||||
|
def buildResponse(output):
|
||||||
|
buffer = io.BytesIO()
|
||||||
|
torchaudio.save(buffer, output, 22050, format="wav")
|
||||||
|
buffer.seek(0)
|
||||||
|
return Response(content=buffer.read(-1), media_type="audio/wav")
|
||||||
|
|
||||||
|
@app.post("/api/inference/sft")
|
||||||
|
@app.get("/api/inference/sft")
|
||||||
|
async def sft(tts: str = Form(), role: str = Form()):
|
||||||
|
start = time.process_time()
|
||||||
|
output = app.cosyvoice.inference_sft(tts, role)
|
||||||
|
end = time.process_time()
|
||||||
|
logging.info("infer time is {} seconds", end-start)
|
||||||
|
return buildResponse(output['tts_speech'])
|
||||||
|
|
||||||
|
@app.post("/api/inference/zero-shot")
|
||||||
|
async def zeroShot(tts: str = Form(), prompt: str = Form(), audio: UploadFile = File()):
|
||||||
|
start = time.process_time()
|
||||||
|
prompt_speech = load_wav(audio.file, 16000)
|
||||||
|
prompt_audio = (prompt_speech.numpy() * (2**15)).astype(np.int16).tobytes()
|
||||||
|
prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(prompt_audio, dtype=np.int16))).unsqueeze(dim=0)
|
||||||
|
prompt_speech_16k = prompt_speech_16k.float() / (2**15)
|
||||||
|
|
||||||
|
output = app.cosyvoice.inference_zero_shot(tts, prompt, prompt_speech_16k)
|
||||||
|
end = time.process_time()
|
||||||
|
logging.info("infer time is {} seconds", end-start)
|
||||||
|
return buildResponse(output['tts_speech'])
|
||||||
|
|
||||||
|
@app.post("/api/inference/cross-lingual")
|
||||||
|
async def crossLingual(tts: str = Form(), audio: UploadFile = File()):
|
||||||
|
start = time.process_time()
|
||||||
|
prompt_speech = load_wav(audio.file, 16000)
|
||||||
|
prompt_audio = (prompt_speech.numpy() * (2**15)).astype(np.int16).tobytes()
|
||||||
|
prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(prompt_audio, dtype=np.int16))).unsqueeze(dim=0)
|
||||||
|
prompt_speech_16k = prompt_speech_16k.float() / (2**15)
|
||||||
|
|
||||||
|
output = app.cosyvoice.inference_cross_lingual(tts, prompt_speech_16k)
|
||||||
|
end = time.process_time()
|
||||||
|
logging.info("infer time is {} seconds", end-start)
|
||||||
|
return buildResponse(output['tts_speech'])
|
||||||
|
|
||||||
|
@app.post("/api/inference/instruct")
|
||||||
|
@app.get("/api/inference/instruct")
|
||||||
|
async def instruct(tts: str = Form(), role: str = Form(), instruct: str = Form()):
|
||||||
|
start = time.process_time()
|
||||||
|
output = app.cosyvoice.inference_instruct(tts, role, instruct)
|
||||||
|
end = time.process_time()
|
||||||
|
logging.info("infer time is {} seconds", end-start)
|
||||||
|
return buildResponse(output['tts_speech'])
|
||||||
|
|
||||||
|
@app.get("/api/roles")
|
||||||
|
async def roles():
|
||||||
|
return {"roles": app.cosyvoice.list_avaliable_spks()}
|
||||||
|
|
||||||
|
@app.get("/", response_class=HTMLResponse)
|
||||||
|
async def root():
|
||||||
|
return """
|
||||||
|
<!DOCTYPE html>
|
||||||
|
<html lang=zh-cn>
|
||||||
|
<head>
|
||||||
|
<meta charset=utf-8>
|
||||||
|
<title>Api information</title>
|
||||||
|
</head>
|
||||||
|
<body>
|
||||||
|
Get the supported tones from the Roles API first, then enter the tones and textual content in the TTS API for synthesis. <a href='./docs'>Documents of API</a>
|
||||||
|
</body>
|
||||||
|
</html>
|
||||||
|
"""
|
||||||
Reference in New Issue
Block a user