This commit is contained in:
lyuxiang.lx
2024-12-12 16:46:28 +08:00
parent 2345ce6be2
commit c693039d14
6 changed files with 145 additions and 71 deletions

View File

@@ -261,16 +261,15 @@ class CosyVoice2Model:
def __init__(self,
llm: torch.nn.Module,
flow: torch.nn.Module,
hift: torch.nn.Module,
fp16: bool):
hift: torch.nn.Module):
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.llm = llm
self.flow = flow
self.hift = hift
self.fp16 = fp16
self.token_min_hop_len = 1 * self.flow.input_frame_rate
self.token_max_hop_len = 2 * self.flow.input_frame_rate
self.token_right_context = self.flow.encoder.pre_lookahead_layer.pre_lookahead_len
self.token_hop_len = 2 * self.flow.input_frame_rate
# here we fix flow encoder/decoder decoding_chunk_size, in the future we will send it as arguments, or use cache
self.flow.encoder.static_chunk_size = 2 * self.flow.input_frame_rate
self.flow.decoder.estimator.static_chunk_size = 2 * self.flow.input_frame_rate * self.flow.token_mel_ratio
# hift cache
self.mel_cache_len = 8
self.source_cache_len = int(self.mel_cache_len * 480)
@@ -278,7 +277,6 @@ class CosyVoice2Model:
self.speech_window = np.hamming(2 * self.source_cache_len)
# rtf and decoding related
self.stream_scale_factor = 1
assert self.stream_scale_factor == 1, 'fix stream_scale_factor to 1 as we haven\'t implement cache in flow matching yet, this constraint will be loosen in the future'
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
self.lock = threading.Lock()
# dict used to store session related variable
@@ -293,17 +291,13 @@ class CosyVoice2Model:
self.llm.half()
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device), strict=True)
self.flow.to(self.device).eval()
self.flow.decoder.fp16 = False
# in case hift_model is a hifigan model
hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(hift_model, map_location=self.device).items()}
self.hift.load_state_dict(hift_state_dict, strict=True)
self.hift.to(self.device).eval()
def load_jit(self, llm_text_encoder_model, llm_llm_model, flow_encoder_model):
assert self.fp16 is True, "we only provide fp16 jit model, set fp16=True if you want to use jit model"
llm_text_encoder = torch.jit.load(llm_text_encoder_model, map_location=self.device)
self.llm.text_encoder = llm_text_encoder
llm_llm = torch.jit.load(llm_llm_model, map_location=self.device)
self.llm.llm = llm_llm
def load_jit(self, flow_encoder_model):
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
self.flow.encoder = flow_encoder
@@ -316,6 +310,14 @@ class CosyVoice2Model:
del self.flow.decoder.estimator
self.flow.decoder.estimator = onnxruntime.InferenceSession(flow_decoder_estimator_model, sess_options=option, providers=providers)
def load_trt(self, flow_decoder_estimator_model):
del self.flow.decoder.estimator
import tensorrt as trt
with open(flow_decoder_estimator_model, 'rb') as f:
self.flow.decoder.estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
self.flow.decoder.estimator = self.flow.decoder.estimator_engine.create_execution_context()
self.flow.decoder.fp16 = True
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
if self.fp16 is True:
llm_embedding = llm_embedding.half()
@@ -339,7 +341,7 @@ class CosyVoice2Model:
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
embedding=embedding.to(self.device),
finalize=finalize)
tts_mel = tts_mel[:, :, token_offset * self.flow.encoder.up_layer.stride:]
tts_mel = tts_mel[:, :, token_offset * self.flow.token_mel_ratio:]
# append hift cache
if self.hift_cache_dict[uuid] is not None:
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
@@ -377,13 +379,11 @@ class CosyVoice2Model:
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
p.start()
if stream is True:
token_hop_len, token_offset = self.token_min_hop_len, 0
self.flow.encoder.static_chunk_size = self.token_min_hop_len
self.flow.decoder.estimator.static_chunk_size = self.token_min_hop_len * self.flow.encoder.up_layer.stride
token_offset = 0
while True:
time.sleep(0.1)
if len(self.tts_speech_token_dict[this_uuid]) - token_offset >= token_hop_len + self.token_right_context:
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_offset + token_hop_len + self.token_right_context]) \
if len(self.tts_speech_token_dict[this_uuid]) - token_offset >= self.token_hop_len + self.flow.pre_lookahead_len:
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_offset + self.token_hop_len + self.flow.pre_lookahead_len]) \
.unsqueeze(dim=0)
this_tts_speech = self.token2wav(token=this_tts_speech_token,
prompt_token=flow_prompt_speech_token,
@@ -392,11 +392,9 @@ class CosyVoice2Model:
uuid=this_uuid,
token_offset=token_offset,
finalize=False)
token_offset += token_hop_len
token_offset += self.token_hop_len
yield {'tts_speech': this_tts_speech.cpu()}
# increase token_hop_len for better speech quality
token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) - token_offset < token_hop_len + self.token_right_context:
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) - token_offset < self.token_hop_len + self.flow.pre_lookahead_len:
break
p.join()
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
@@ -412,14 +410,13 @@ class CosyVoice2Model:
else:
# deal with all tokens
p.join()
self.flow.encoder.static_chunk_size = 0
self.flow.decoder.estimator.static_chunk_size = 0
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
this_tts_speech = self.token2wav(token=this_tts_speech_token,
prompt_token=flow_prompt_speech_token,
prompt_feat=prompt_speech_feat,
embedding=flow_embedding,
uuid=this_uuid,
token_offset=0,
finalize=True,
speed=speed)
yield {'tts_speech': this_tts_speech.cpu()}