mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 09:29:25 +08:00
update
This commit is contained in:
@@ -38,6 +38,7 @@ class CosyVoice:
|
||||
'{}/spk2info.pt'.format(model_dir),
|
||||
instruct,
|
||||
configs['allowed_special'])
|
||||
self.sample_rate = configs['sample_rate']
|
||||
if torch.cuda.is_available() is False and (fp16 is True or load_jit is True):
|
||||
load_jit = False
|
||||
fp16 = False
|
||||
@@ -64,7 +65,7 @@ class CosyVoice:
|
||||
start_time = time.time()
|
||||
logging.info('synthesis text {}'.format(i))
|
||||
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||
speech_len = model_output['tts_speech'].shape[1] / 22050
|
||||
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||
yield model_output
|
||||
start_time = time.time()
|
||||
@@ -74,11 +75,11 @@ class CosyVoice:
|
||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
|
||||
if len(i) < 0.5 * len(prompt_text):
|
||||
logging.warning('synthesis text {} too short than prompt text {}, this may lead to bad performance'.format(i, prompt_text))
|
||||
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k)
|
||||
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k, self.sample_rate)
|
||||
start_time = time.time()
|
||||
logging.info('synthesis text {}'.format(i))
|
||||
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||
speech_len = model_output['tts_speech'].shape[1] / 22050
|
||||
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||
yield model_output
|
||||
start_time = time.time()
|
||||
@@ -87,11 +88,11 @@ class CosyVoice:
|
||||
if self.frontend.instruct is True:
|
||||
raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir))
|
||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
|
||||
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k)
|
||||
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate)
|
||||
start_time = time.time()
|
||||
logging.info('synthesis text {}'.format(i))
|
||||
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||
speech_len = model_output['tts_speech'].shape[1] / 22050
|
||||
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||
yield model_output
|
||||
start_time = time.time()
|
||||
@@ -105,23 +106,23 @@ class CosyVoice:
|
||||
start_time = time.time()
|
||||
logging.info('synthesis text {}'.format(i))
|
||||
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||
speech_len = model_output['tts_speech'].shape[1] / 22050
|
||||
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||
yield model_output
|
||||
start_time = time.time()
|
||||
|
||||
def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0):
|
||||
model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k)
|
||||
model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k, self.sample_rate)
|
||||
start_time = time.time()
|
||||
for model_output in self.model.vc(**model_input, stream=stream, speed=speed):
|
||||
speech_len = model_output['tts_speech'].shape[1] / 22050
|
||||
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||
yield model_output
|
||||
start_time = time.time()
|
||||
|
||||
class CosyVoice2(CosyVoice):
|
||||
|
||||
def __init__(self, model_dir, load_jit=True, load_onnx=False, fp16=True):
|
||||
def __init__(self, model_dir, load_jit=False, load_onnx=False, load_trt=False):
|
||||
instruct = True if '-Instruct' in model_dir else False
|
||||
self.model_dir = model_dir
|
||||
if not os.path.exists(model_dir):
|
||||
@@ -135,18 +136,21 @@ class CosyVoice2(CosyVoice):
|
||||
'{}/spk2info.pt'.format(model_dir),
|
||||
instruct,
|
||||
configs['allowed_special'])
|
||||
if torch.cuda.is_available() is False and (fp16 is True or load_jit is True):
|
||||
self.sample_rate = configs['sample_rate']
|
||||
if torch.cuda.is_available() is False and load_jit is True:
|
||||
load_jit = False
|
||||
fp16 = False
|
||||
logging.warning('cpu do not support fp16 and jit, force set to False')
|
||||
self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'], fp16)
|
||||
logging.warning('cpu do not support jit, force set to False')
|
||||
self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'])
|
||||
self.model.load('{}/llm.pt'.format(model_dir),
|
||||
'{}/flow.pt'.format(model_dir),
|
||||
'{}/hift.pt'.format(model_dir))
|
||||
if load_jit:
|
||||
self.model.load_jit('{}/llm.text_encoder.fp16.zip'.format(model_dir),
|
||||
'{}/llm.llm.fp16.zip'.format(model_dir),
|
||||
'{}/flow.encoder.fp32.zip'.format(model_dir))
|
||||
self.model.load_jit('{}/flow.encoder.fp32.zip'.format(model_dir))
|
||||
if load_trt is True and load_onnx is True:
|
||||
load_onnx = False
|
||||
logging.warning('can not set both load_trt and load_onnx to True, force set load_onnx to False')
|
||||
if load_onnx:
|
||||
self.model.load_onnx('{}/flow.decoder.estimator.fp32.onnx'.format(model_dir))
|
||||
if load_trt:
|
||||
self.model.load_trt('{}/flow.decoder.estimator.fp16.Volta.plan'.format(model_dir))
|
||||
del configs
|
||||
Reference in New Issue
Block a user