mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 17:39:25 +08:00
add some instruction and assert
This commit is contained in:
@@ -42,7 +42,6 @@ class CosyVoiceFrontEnd:
|
||||
campplus_model: str,
|
||||
speech_tokenizer_model: str,
|
||||
spk2info: str = '',
|
||||
instruct: bool = False,
|
||||
allowed_special: str = 'all'):
|
||||
self.tokenizer = get_tokenizer()
|
||||
self.feat_extractor = feat_extractor
|
||||
@@ -58,9 +57,7 @@ class CosyVoiceFrontEnd:
|
||||
self.spk2info = torch.load(spk2info, map_location=self.device)
|
||||
else:
|
||||
self.spk2info = {}
|
||||
self.instruct = instruct
|
||||
self.allowed_special = allowed_special
|
||||
self.inflect_parser = inflect.engine()
|
||||
self.use_ttsfrd = use_ttsfrd
|
||||
if self.use_ttsfrd:
|
||||
self.frd = ttsfrd.TtsFrontendEngine()
|
||||
@@ -71,6 +68,7 @@ class CosyVoiceFrontEnd:
|
||||
else:
|
||||
self.zh_tn_model = ZhNormalizer(remove_erhua=False, full_to_half=False, overwrite_cache=True)
|
||||
self.en_tn_model = EnNormalizer()
|
||||
self.inflect_parser = inflect.engine()
|
||||
|
||||
def _extract_text_token(self, text):
|
||||
text_token = self.tokenizer.encode(text, allowed_special=self.allowed_special)
|
||||
@@ -111,15 +109,11 @@ class CosyVoiceFrontEnd:
|
||||
if text_frontend is False:
|
||||
return [text] if split is True else text
|
||||
text = text.strip()
|
||||
# When generating text that contains only punctuation marks or whitespace characters
|
||||
# - Returning empty texts ensures consistent processing logic.
|
||||
if is_only_punctuation(text):
|
||||
return []
|
||||
if contains_chinese(text):
|
||||
if self.use_ttsfrd:
|
||||
texts = [i["text"] for i in json.loads(self.frd.do_voicegen_frd(text))["sentences"]]
|
||||
text = ''.join(texts)
|
||||
else:
|
||||
if self.use_ttsfrd:
|
||||
texts = [i["text"] for i in json.loads(self.frd.do_voicegen_frd(text))["sentences"]]
|
||||
text = ''.join(texts)
|
||||
else:
|
||||
if contains_chinese(text):
|
||||
text = self.zh_tn_model.normalize(text)
|
||||
text = text.replace("\n", "")
|
||||
text = replace_blank(text)
|
||||
@@ -130,18 +124,13 @@ class CosyVoiceFrontEnd:
|
||||
text = re.sub(r'[,,、]+$', '。', text)
|
||||
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "zh", token_max_n=80,
|
||||
token_min_n=60, merge_len=20, comma_split=False))
|
||||
else:
|
||||
if self.use_ttsfrd:
|
||||
texts = [i["text"] for i in json.loads(self.frd.do_voicegen_frd(text))["sentences"]]
|
||||
text = ''.join(texts)
|
||||
else:
|
||||
text = self.en_tn_model.normalize(text)
|
||||
text = spell_out_number(text, self.inflect_parser)
|
||||
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80,
|
||||
token_min_n=60, merge_len=20, comma_split=False))
|
||||
if split is False:
|
||||
return text
|
||||
return texts
|
||||
texts = [i for i in texts if not is_only_punctuation(i)]
|
||||
return texts if split is True else text
|
||||
|
||||
def frontend_sft(self, tts_text, spk_id):
|
||||
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
||||
@@ -188,22 +177,9 @@ class CosyVoiceFrontEnd:
|
||||
return model_input
|
||||
|
||||
def frontend_instruct2(self, tts_text, instruct_text, prompt_speech_16k, resample_rate):
|
||||
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
||||
prompt_text_token, prompt_text_token_len = self._extract_text_token(instruct_text + '<|endofprompt|>')
|
||||
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
|
||||
speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
|
||||
speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
||||
if resample_rate == 24000:
|
||||
# cosyvoice2, force speech_feat % speech_token = 2
|
||||
token_len = min(int(speech_feat.shape[1] / 2), speech_token.shape[1])
|
||||
speech_feat, speech_feat_len[:] = speech_feat[:, :2 * token_len], 2 * token_len
|
||||
speech_token, speech_token_len[:] = speech_token[:, :token_len], token_len
|
||||
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
||||
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
||||
'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len,
|
||||
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
|
||||
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
|
||||
'llm_embedding': embedding, 'flow_embedding': embedding}
|
||||
model_input = self.frontend_zero_shot(tts_text, instruct_text + '<|endofprompt|>', prompt_speech_16k, resample_rate)
|
||||
del model_input['llm_prompt_speech_token']
|
||||
del model_input['llm_prompt_speech_token_len']
|
||||
return model_input
|
||||
|
||||
def frontend_vc(self, source_speech_16k, prompt_speech_16k, resample_rate):
|
||||
|
||||
Reference in New Issue
Block a user