add some instruction and assert

This commit is contained in:
lyuxiang.lx
2024-12-30 16:41:57 +08:00
parent bfcbc73df8
commit b9ddcba5fd
6 changed files with 52 additions and 63 deletions

View File

@@ -20,23 +20,24 @@ import torch
from cosyvoice.cli.frontend import CosyVoiceFrontEnd
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
from cosyvoice.utils.file_utils import logging
from cosyvoice.utils.class_utils import get_model_type
class CosyVoice:
def __init__(self, model_dir, load_jit=True, load_onnx=False, fp16=True):
instruct = True if '-Instruct' in model_dir else False
self.instruct = True if '-Instruct' in model_dir else False
self.model_dir = model_dir
if not os.path.exists(model_dir):
model_dir = snapshot_download(model_dir)
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
configs = load_hyperpyyaml(f)
assert get_model_type(configs) == CosyVoiceModel, 'do not use {} for CosyVoice initialization!'.format(model_dir)
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
configs['feat_extractor'],
'{}/campplus.onnx'.format(model_dir),
'{}/speech_tokenizer_v1.onnx'.format(model_dir),
'{}/spk2info.pt'.format(model_dir),
instruct,
configs['allowed_special'])
self.sample_rate = configs['sample_rate']
if torch.cuda.is_available() is False and (fp16 is True or load_jit is True):
@@ -85,8 +86,6 @@ class CosyVoice:
start_time = time.time()
def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
if self.frontend.instruct is True and isinstance(self.model, CosyVoiceModel):
raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir))
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate)
start_time = time.time()
@@ -98,8 +97,8 @@ class CosyVoice:
start_time = time.time()
def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0, text_frontend=True):
assert isinstance(self.model, CosyVoiceModel)
if self.frontend.instruct is False:
assert isinstance(self.model, CosyVoiceModel), 'inference_instruct is only implemented for CosyVoice!'
if self.instruct is False:
raise ValueError('{} do not support instruct inference'.format(self.model_dir))
instruct_text = self.frontend.text_normalize(instruct_text, split=False, text_frontend=text_frontend)
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
@@ -112,18 +111,6 @@ class CosyVoice:
yield model_output
start_time = time.time()
def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
assert isinstance(self.model, CosyVoice2Model)
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate)
start_time = time.time()
logging.info('synthesis text {}'.format(i))
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
yield model_output
start_time = time.time()
def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0):
model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k, self.sample_rate)
start_time = time.time()
@@ -137,18 +124,18 @@ class CosyVoice:
class CosyVoice2(CosyVoice):
def __init__(self, model_dir, load_jit=False, load_onnx=False, load_trt=False):
instruct = True if '-Instruct' in model_dir else False
self.instruct = True if '-Instruct' in model_dir else False
self.model_dir = model_dir
if not os.path.exists(model_dir):
model_dir = snapshot_download(model_dir)
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')})
assert get_model_type(configs) == CosyVoice2Model, 'do not use {} for CosyVoice2 initialization!'.format(model_dir)
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
configs['feat_extractor'],
'{}/campplus.onnx'.format(model_dir),
'{}/speech_tokenizer_v2.onnx'.format(model_dir),
'{}/spk2info.pt'.format(model_dir),
instruct,
configs['allowed_special'])
self.sample_rate = configs['sample_rate']
if torch.cuda.is_available() is False and load_jit is True:
@@ -168,3 +155,18 @@ class CosyVoice2(CosyVoice):
if load_trt:
self.model.load_trt('{}/flow.decoder.estimator.fp16.Volta.plan'.format(model_dir))
del configs
def inference_instruct(self, *args, **kwargs):
raise NotImplementedError('inference_instruct is not implemented for CosyVoice2!')
def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
assert isinstance(self.model, CosyVoice2Model), 'inference_instruct2 is only implemented for CosyVoice2!'
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate)
start_time = time.time()
logging.info('synthesis text {}'.format(i))
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
yield model_output
start_time = time.time()

View File

@@ -42,7 +42,6 @@ class CosyVoiceFrontEnd:
campplus_model: str,
speech_tokenizer_model: str,
spk2info: str = '',
instruct: bool = False,
allowed_special: str = 'all'):
self.tokenizer = get_tokenizer()
self.feat_extractor = feat_extractor
@@ -58,9 +57,7 @@ class CosyVoiceFrontEnd:
self.spk2info = torch.load(spk2info, map_location=self.device)
else:
self.spk2info = {}
self.instruct = instruct
self.allowed_special = allowed_special
self.inflect_parser = inflect.engine()
self.use_ttsfrd = use_ttsfrd
if self.use_ttsfrd:
self.frd = ttsfrd.TtsFrontendEngine()
@@ -71,6 +68,7 @@ class CosyVoiceFrontEnd:
else:
self.zh_tn_model = ZhNormalizer(remove_erhua=False, full_to_half=False, overwrite_cache=True)
self.en_tn_model = EnNormalizer()
self.inflect_parser = inflect.engine()
def _extract_text_token(self, text):
text_token = self.tokenizer.encode(text, allowed_special=self.allowed_special)
@@ -111,15 +109,11 @@ class CosyVoiceFrontEnd:
if text_frontend is False:
return [text] if split is True else text
text = text.strip()
# When generating text that contains only punctuation marks or whitespace characters
# - Returning empty texts ensures consistent processing logic.
if is_only_punctuation(text):
return []
if contains_chinese(text):
if self.use_ttsfrd:
texts = [i["text"] for i in json.loads(self.frd.do_voicegen_frd(text))["sentences"]]
text = ''.join(texts)
else:
if self.use_ttsfrd:
texts = [i["text"] for i in json.loads(self.frd.do_voicegen_frd(text))["sentences"]]
text = ''.join(texts)
else:
if contains_chinese(text):
text = self.zh_tn_model.normalize(text)
text = text.replace("\n", "")
text = replace_blank(text)
@@ -130,18 +124,13 @@ class CosyVoiceFrontEnd:
text = re.sub(r'[,、]+$', '', text)
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "zh", token_max_n=80,
token_min_n=60, merge_len=20, comma_split=False))
else:
if self.use_ttsfrd:
texts = [i["text"] for i in json.loads(self.frd.do_voicegen_frd(text))["sentences"]]
text = ''.join(texts)
else:
text = self.en_tn_model.normalize(text)
text = spell_out_number(text, self.inflect_parser)
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80,
token_min_n=60, merge_len=20, comma_split=False))
if split is False:
return text
return texts
texts = [i for i in texts if not is_only_punctuation(i)]
return texts if split is True else text
def frontend_sft(self, tts_text, spk_id):
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
@@ -188,22 +177,9 @@ class CosyVoiceFrontEnd:
return model_input
def frontend_instruct2(self, tts_text, instruct_text, prompt_speech_16k, resample_rate):
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
prompt_text_token, prompt_text_token_len = self._extract_text_token(instruct_text + '<|endofprompt|>')
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
if resample_rate == 24000:
# cosyvoice2, force speech_feat % speech_token = 2
token_len = min(int(speech_feat.shape[1] / 2), speech_token.shape[1])
speech_feat, speech_feat_len[:] = speech_feat[:, :2 * token_len], 2 * token_len
speech_token, speech_token_len[:] = speech_token[:, :token_len], token_len
embedding = self._extract_spk_embedding(prompt_speech_16k)
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len,
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
'llm_embedding': embedding, 'flow_embedding': embedding}
model_input = self.frontend_zero_shot(tts_text, instruct_text + '<|endofprompt|>', prompt_speech_16k, resample_rate)
del model_input['llm_prompt_speech_token']
del model_input['llm_prompt_speech_token_len']
return model_input
def frontend_vc(self, source_speech_16k, prompt_speech_16k, resample_rate):

View File

@@ -316,6 +316,8 @@ class CosyVoice2Model:
import tensorrt as trt
with open(flow_decoder_estimator_model, 'rb') as f:
self.flow.decoder.estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
if self.flow.decoder.estimator_engine is None:
raise ValueError('failed to load trt {}'.format(flow_decoder_estimator_model))
self.flow.decoder.estimator = self.flow.decoder.estimator_engine.create_execution_context()
self.flow.decoder.fp16 = True