Merge pull request #1331 from FunAudioLLM/dev/lyuxiang.lx

Dev/lyuxiang.lx
This commit is contained in:
Xiang Lyu
2025-05-27 14:07:56 +08:00
committed by GitHub
16 changed files with 39 additions and 483 deletions

View File

@@ -26,7 +26,7 @@ from cosyvoice.utils.class_utils import get_model_type
class CosyVoice: class CosyVoice:
def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False): def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False, trt_concurrent=1):
self.instruct = True if '-Instruct' in model_dir else False self.instruct = True if '-Instruct' in model_dir else False
self.model_dir = model_dir self.model_dir = model_dir
self.fp16 = fp16 self.fp16 = fp16
@@ -48,7 +48,7 @@ class CosyVoice:
if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or fp16 is True): if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or fp16 is True):
load_jit, load_trt, fp16 = False, False, False load_jit, load_trt, fp16 = False, False, False
logging.warning('no cuda device, set load_jit/load_trt/fp16 to False') logging.warning('no cuda device, set load_jit/load_trt/fp16 to False')
self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'], fp16) self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'], fp16, trt_concurrent)
self.model.load('{}/llm.pt'.format(model_dir), self.model.load('{}/llm.pt'.format(model_dir),
'{}/flow.pt'.format(model_dir), '{}/flow.pt'.format(model_dir),
'{}/hift.pt'.format(model_dir)) '{}/hift.pt'.format(model_dir))

View File

@@ -258,9 +258,6 @@ class CosyVoice2Model(CosyVoiceModel):
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.llm = llm self.llm = llm
self.flow = flow self.flow = flow
# NOTE default setting for jit/onnx export, you can set to False when using pytorch inference
self.flow.encoder.streaming = True
self.flow.decoder.estimator.streaming = True
self.hift = hift self.hift = hift
self.fp16 = fp16 self.fp16 = fp16
self.trt_concurrent = trt_concurrent self.trt_concurrent = trt_concurrent
@@ -290,7 +287,7 @@ class CosyVoice2Model(CosyVoiceModel):
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device) flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
self.flow.encoder = flow_encoder self.flow.encoder = flow_encoder
def token2wav(self, token, prompt_token, prompt_feat, embedding, token_offset, uuid, finalize=False, speed=1.0): def token2wav(self, token, prompt_token, prompt_feat, embedding, token_offset, uuid, stream=False, finalize=False, speed=1.0):
with torch.cuda.amp.autocast(self.fp16), self.trt_context_dict[uuid]: with torch.cuda.amp.autocast(self.fp16), self.trt_context_dict[uuid]:
tts_mel, _ = self.flow.inference(token=token.to(self.device), tts_mel, _ = self.flow.inference(token=token.to(self.device),
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device), token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
@@ -299,6 +296,7 @@ class CosyVoice2Model(CosyVoiceModel):
prompt_feat=prompt_feat.to(self.device), prompt_feat=prompt_feat.to(self.device),
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device), prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
embedding=embedding.to(self.device), embedding=embedding.to(self.device),
streaming=stream,
finalize=finalize) finalize=finalize)
tts_mel = tts_mel[:, :, token_offset * self.flow.token_mel_ratio:] tts_mel = tts_mel[:, :, token_offset * self.flow.token_mel_ratio:]
# append hift cache # append hift cache
@@ -356,6 +354,7 @@ class CosyVoice2Model(CosyVoiceModel):
embedding=flow_embedding, embedding=flow_embedding,
token_offset=token_offset, token_offset=token_offset,
uuid=this_uuid, uuid=this_uuid,
stream=stream,
finalize=False) finalize=False)
token_offset += this_token_hop_len token_offset += this_token_hop_len
yield {'tts_speech': this_tts_speech.cpu()} yield {'tts_speech': this_tts_speech.cpu()}

View File

@@ -419,10 +419,6 @@ class CausalConditionalDecoder(ConditionalDecoder):
Returns: Returns:
_type_: _description_ _type_: _description_
""" """
if hasattr(self, 'streaming'):
assert self.training is False, 'you have self.streaming attr, make sure that you are running inference mode'
streaming = self.streaming
t = self.time_embeddings(t).to(t.dtype) t = self.time_embeddings(t).to(t.dtype)
t = self.time_mlp(t) t = self.time_mlp(t)

View File

@@ -241,6 +241,7 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
prompt_feat, prompt_feat,
prompt_feat_len, prompt_feat_len,
embedding, embedding,
streaming,
finalize): finalize):
assert token.shape[0] == 1 assert token.shape[0] == 1
# xvec projection # xvec projection
@@ -254,10 +255,10 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
# text encode # text encode
if finalize is True: if finalize is True:
h, h_lengths = self.encoder(token, token_len) h, h_lengths = self.encoder(token, token_len, streaming=streaming)
else: else:
token, context = token[:, :-self.pre_lookahead_len], token[:, -self.pre_lookahead_len:] token, context = token[:, :-self.pre_lookahead_len], token[:, -self.pre_lookahead_len:]
h, h_lengths = self.encoder(token, token_len, context=context) h, h_lengths = self.encoder(token, token_len, context=context, streaming=streaming)
mel_len1, mel_len2 = prompt_feat.shape[1], h.shape[1] - prompt_feat.shape[1] mel_len1, mel_len2 = prompt_feat.shape[1], h.shape[1] - prompt_feat.shape[1]
h = self.encoder_proj(h) h = self.encoder_proj(h)
@@ -273,6 +274,7 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
spks=embedding, spks=embedding,
cond=conds, cond=conds,
n_timesteps=10, n_timesteps=10,
streaming=streaming
) )
feat = feat[:, :, mel_len1:] feat = feat[:, :, mel_len1:]
assert feat.shape[2] == mel_len2 assert feat.shape[2] == mel_len2

View File

@@ -69,7 +69,7 @@ class ConditionalCFM(BASECFM):
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi) t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), cache return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), cache
def solve_euler(self, x, t_span, mu, mask, spks, cond): def solve_euler(self, x, t_span, mu, mask, spks, cond, streaming=False):
""" """
Fixed euler solver for ODEs. Fixed euler solver for ODEs.
Args: Args:
@@ -110,7 +110,8 @@ class ConditionalCFM(BASECFM):
x_in, mask_in, x_in, mask_in,
mu_in, t_in, mu_in, t_in,
spks_in, spks_in,
cond_in cond_in,
streaming
) )
dphi_dt, cfg_dphi_dt = torch.split(dphi_dt, [x.size(0), x.size(0)], dim=0) dphi_dt, cfg_dphi_dt = torch.split(dphi_dt, [x.size(0), x.size(0)], dim=0)
dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt) dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt)
@@ -122,9 +123,9 @@ class ConditionalCFM(BASECFM):
return sol[-1].float() return sol[-1].float()
def forward_estimator(self, x, mask, mu, t, spks, cond): def forward_estimator(self, x, mask, mu, t, spks, cond, streaming=False):
if isinstance(self.estimator, torch.nn.Module): if isinstance(self.estimator, torch.nn.Module):
return self.estimator(x, mask, mu, t, spks, cond) return self.estimator(x, mask, mu, t, spks, cond, streaming=streaming)
else: else:
estimator, trt_engine = self.estimator.acquire_estimator() estimator, trt_engine = self.estimator.acquire_estimator()
estimator.set_input_shape('x', (2, 80, x.size(2))) estimator.set_input_shape('x', (2, 80, x.size(2)))
@@ -196,7 +197,7 @@ class CausalConditionalCFM(ConditionalCFM):
self.rand_noise = torch.randn([1, 80, 50 * 300]) self.rand_noise = torch.randn([1, 80, 50 * 300])
@torch.inference_mode() @torch.inference_mode()
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None): def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, streaming=False):
"""Forward diffusion """Forward diffusion
Args: Args:
@@ -220,4 +221,4 @@ class CausalConditionalCFM(ConditionalCFM):
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype) t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
if self.t_scheduler == 'cosine': if self.t_scheduler == 'cosine':
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi) t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), None return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond, streaming=streaming), None

View File

@@ -272,9 +272,6 @@ class UpsampleConformerEncoder(torch.nn.Module):
checkpointing API because `__call__` attaches all the hooks of the module. checkpointing API because `__call__` attaches all the hooks of the module.
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2 https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
""" """
if hasattr(self, 'streaming'):
assert self.training is False, 'you have self.streaming attr, make sure that you are running inference mode'
streaming = self.streaming
T = xs.size(1) T = xs.size(1)
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T) masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
if self.global_cmvn is not None: if self.global_cmvn is not None:

View File

@@ -158,6 +158,7 @@ feat_extractor: !name:matcha.utils.audio.mel_spectrogram
center: False center: False
compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
feat_extractor: !ref <feat_extractor> feat_extractor: !ref <feat_extractor>
token_mel_ratio: 2
compute_f0: !name:cosyvoice.dataset.processor.compute_f0 compute_f0: !name:cosyvoice.dataset.processor.compute_f0
sample_rate: !ref <sample_rate> sample_rate: !ref <sample_rate>
hop_size: 480 hop_size: 480

View File

@@ -1,3 +0,0 @@
# NOTE(kan-bayashi): Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
export PYTHONIOENCODING=UTF-8
export PYTHONPATH=../../../:../../../third_party/Matcha-TTS:$PYTHONPATH

View File

@@ -0,0 +1 @@
../cosyvoice/path.sh

View File

@@ -1,5 +0,0 @@
{
"1089_134686_000002_000000": [
"hello, my name is Jack. What is your name?"
]
}

View File

@@ -0,0 +1 @@
../cosyvoice/tts_text.json

View File

@@ -0,0 +1 @@
../../libritts/cosyvoice/conf

View File

@@ -1,203 +0,0 @@
# set random seed, so that you may reproduce your result.
__set_seed1: !apply:random.seed [1986]
__set_seed2: !apply:numpy.random.seed [1986]
__set_seed3: !apply:torch.manual_seed [1986]
__set_seed4: !apply:torch.cuda.manual_seed_all [1986]
# fixed params
sample_rate: 22050
text_encoder_input_size: 512
llm_input_size: 1024
llm_output_size: 1024
spk_embed_dim: 192
# model params
# for all class/function included in this repo, we use !<name> or !<new> for intialization, so that user may find all corresponding class/function according to one single yaml.
# for system/third_party class/function, we do not require this.
llm: !new:cosyvoice.llm.llm.TransformerLM
text_encoder_input_size: !ref <text_encoder_input_size>
llm_input_size: !ref <llm_input_size>
llm_output_size: !ref <llm_output_size>
text_token_size: 51866 # change to 60515 if you want to train with CosyVoice-300M-25Hz recipe
speech_token_size: 4096
length_normalized_loss: True
lsm_weight: 0
spk_embed_dim: !ref <spk_embed_dim>
text_encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
input_size: !ref <text_encoder_input_size>
output_size: 1024
attention_heads: 8
linear_units: 2048
num_blocks: 3
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
normalize_before: True
input_layer: 'linear'
pos_enc_layer_type: 'rel_pos_espnet'
selfattention_layer_type: 'rel_selfattn'
use_cnn_module: False
macaron_style: False
use_dynamic_chunk: False
use_dynamic_left_chunk: False
static_chunk_size: 1
llm: !new:cosyvoice.transformer.encoder.TransformerEncoder
input_size: !ref <llm_input_size>
output_size: !ref <llm_output_size>
attention_heads: 8
linear_units: 2048
num_blocks: 7
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
input_layer: 'linear_legacy'
pos_enc_layer_type: 'rel_pos_espnet'
selfattention_layer_type: 'rel_selfattn'
static_chunk_size: 1
sampling: !name:cosyvoice.utils.common.ras_sampling
top_p: 0.8
top_k: 25
win_size: 10
tau_r: 0.1
flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
input_size: 512
output_size: 80
spk_embed_dim: !ref <spk_embed_dim>
output_type: 'mel'
vocab_size: 4096
input_frame_rate: 50 # change to 25 if you want to train with CosyVoice-300M-25Hz recipe
only_mask_loss: True
encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
output_size: 512
attention_heads: 4
linear_units: 1024
num_blocks: 3
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.1
normalize_before: True
input_layer: 'linear'
pos_enc_layer_type: 'rel_pos_espnet'
selfattention_layer_type: 'rel_selfattn'
input_size: 512
use_cnn_module: False
macaron_style: False
length_regulator: !new:cosyvoice.flow.length_regulator.InterpolateRegulator
channels: 80
sampling_ratios: [1, 1, 1, 1]
decoder: !new:cosyvoice.flow.flow_matching.ConditionalCFM
in_channels: 240
n_spks: 1
spk_emb_dim: 80
cfm_params: !new:omegaconf.DictConfig
content:
sigma_min: 1e-06
solver: 'euler'
t_scheduler: 'cosine'
training_cfg_rate: 0.2
inference_cfg_rate: 0.7
reg_loss_type: 'l1'
estimator: !new:cosyvoice.flow.decoder.ConditionalDecoder
in_channels: 320
out_channels: 80
channels: [256, 256]
dropout: 0.0
attention_head_dim: 64
n_blocks: 4
num_mid_blocks: 8
num_heads: 8
act_fn: 'gelu'
hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
in_channels: 80
base_channels: 512
nb_harmonics: 8
sampling_rate: !ref <sample_rate>
nsf_alpha: 0.1
nsf_sigma: 0.003
nsf_voiced_threshold: 10
upsample_rates: [8, 8]
upsample_kernel_sizes: [16, 16]
istft_params:
n_fft: 16
hop_len: 4
resblock_kernel_sizes: [3, 7, 11]
resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
source_resblock_kernel_sizes: [7, 11]
source_resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5]]
lrelu_slope: 0.1
audio_limit: 0.99
f0_predictor: !new:cosyvoice.hifigan.f0_predictor.ConvRNNF0Predictor
num_class: 1
in_channels: 80
cond_channels: 512
# processor functions
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
get_tokenizer: !name:whisper.tokenizer.get_tokenizer # change to !name:cosyvoice.tokenizer.tokenizer.get_tokenizer if you want to train with CosyVoice-300M-25Hz recipe
multilingual: True
num_languages: 100
language: 'en'
task: 'transcribe'
allowed_special: 'all'
tokenize: !name:cosyvoice.dataset.processor.tokenize
get_tokenizer: !ref <get_tokenizer>
allowed_special: !ref <allowed_special>
filter: !name:cosyvoice.dataset.processor.filter
max_length: 40960
min_length: 0
token_max_length: 200
token_min_length: 1
resample: !name:cosyvoice.dataset.processor.resample
resample_rate: !ref <sample_rate>
feat_extractor: !name:matcha.utils.audio.mel_spectrogram
n_fft: 1024
num_mels: 80
sampling_rate: !ref <sample_rate>
hop_size: 256
win_size: 1024
fmin: 0
fmax: 8000
center: False
compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
feat_extractor: !ref <feat_extractor>
parse_embedding: !name:cosyvoice.dataset.processor.parse_embedding
normalize: True
shuffle: !name:cosyvoice.dataset.processor.shuffle
shuffle_size: 1000
sort: !name:cosyvoice.dataset.processor.sort
sort_size: 500 # sort_size should be less than shuffle_size
batch: !name:cosyvoice.dataset.processor.batch
batch_type: 'dynamic'
max_frames_in_batch: 12000
padding: !name:cosyvoice.dataset.processor.padding
use_spk_embedding: False # change to True during sft
# dataset processor pipeline
data_pipeline: [
!ref <parquet_opener>,
!ref <tokenize>,
!ref <filter>,
!ref <resample>,
!ref <compute_fbank>,
!ref <parse_embedding>,
!ref <shuffle>,
!ref <sort>,
!ref <batch>,
!ref <padding>,
]
# train conf
train_conf:
optim: adam
optim_conf:
lr: 0.002 # change to 0.001 if you want to train flow from scratch
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000
max_epoch: 200
grad_clip: 5
accum_grad: 2
log_interval: 100
save_per_step: -1

View File

@@ -1,203 +0,0 @@
# set random seed, so that you may reproduce your result.
__set_seed1: !apply:random.seed [1986]
__set_seed2: !apply:numpy.random.seed [1986]
__set_seed3: !apply:torch.manual_seed [1986]
__set_seed4: !apply:torch.cuda.manual_seed_all [1986]
# fixed params
sample_rate: 22050
text_encoder_input_size: 512
llm_input_size: 1024
llm_output_size: 1024
spk_embed_dim: 192
# model params
# for all class/function included in this repo, we use !<name> or !<new> for intialization, so that user may find all corresponding class/function according to one single yaml.
# for system/third_party class/function, we do not require this.
llm: !new:cosyvoice.llm.llm.TransformerLM
text_encoder_input_size: !ref <text_encoder_input_size>
llm_input_size: !ref <llm_input_size>
llm_output_size: !ref <llm_output_size>
text_token_size: 51866 # change to 60515 if you want to train with CosyVoice-300M-25Hz recipe
speech_token_size: 4096
length_normalized_loss: True
lsm_weight: 0
spk_embed_dim: !ref <spk_embed_dim>
text_encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
input_size: !ref <text_encoder_input_size>
output_size: 1024
attention_heads: 16
linear_units: 4096
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
normalize_before: True
input_layer: 'linear'
pos_enc_layer_type: 'rel_pos_espnet'
selfattention_layer_type: 'rel_selfattn'
use_cnn_module: False
macaron_style: False
use_dynamic_chunk: False
use_dynamic_left_chunk: False
static_chunk_size: 1
llm: !new:cosyvoice.transformer.encoder.TransformerEncoder
input_size: !ref <llm_input_size>
output_size: !ref <llm_output_size>
attention_heads: 16
linear_units: 4096
num_blocks: 14
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
input_layer: 'linear_legacy'
pos_enc_layer_type: 'rel_pos_espnet'
selfattention_layer_type: 'rel_selfattn'
static_chunk_size: 1
sampling: !name:cosyvoice.utils.common.ras_sampling
top_p: 0.8
top_k: 25
win_size: 10
tau_r: 0.1
flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
input_size: 512
output_size: 80
spk_embed_dim: !ref <spk_embed_dim>
output_type: 'mel'
vocab_size: 4096
input_frame_rate: 50 # change to 25 if you want to train with CosyVoice-300M-25Hz recipe
only_mask_loss: True
encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
output_size: 512
attention_heads: 8
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.1
normalize_before: True
input_layer: 'linear'
pos_enc_layer_type: 'rel_pos_espnet'
selfattention_layer_type: 'rel_selfattn'
input_size: 512
use_cnn_module: False
macaron_style: False
length_regulator: !new:cosyvoice.flow.length_regulator.InterpolateRegulator
channels: 80
sampling_ratios: [1, 1, 1, 1]
decoder: !new:cosyvoice.flow.flow_matching.ConditionalCFM
in_channels: 240
n_spks: 1
spk_emb_dim: 80
cfm_params: !new:omegaconf.DictConfig
content:
sigma_min: 1e-06
solver: 'euler'
t_scheduler: 'cosine'
training_cfg_rate: 0.2
inference_cfg_rate: 0.7
reg_loss_type: 'l1'
estimator: !new:cosyvoice.flow.decoder.ConditionalDecoder
in_channels: 320
out_channels: 80
channels: [256, 256]
dropout: 0.0
attention_head_dim: 64
n_blocks: 4
num_mid_blocks: 12
num_heads: 8
act_fn: 'gelu'
hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
in_channels: 80
base_channels: 512
nb_harmonics: 8
sampling_rate: !ref <sample_rate>
nsf_alpha: 0.1
nsf_sigma: 0.003
nsf_voiced_threshold: 10
upsample_rates: [8, 8]
upsample_kernel_sizes: [16, 16]
istft_params:
n_fft: 16
hop_len: 4
resblock_kernel_sizes: [3, 7, 11]
resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
source_resblock_kernel_sizes: [7, 11]
source_resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5]]
lrelu_slope: 0.1
audio_limit: 0.99
f0_predictor: !new:cosyvoice.hifigan.f0_predictor.ConvRNNF0Predictor
num_class: 1
in_channels: 80
cond_channels: 512
# processor functions
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
get_tokenizer: !name:whisper.tokenizer.get_tokenizer # change to !name:cosyvoice.tokenizer.tokenizer.get_tokenizer if you want to train with CosyVoice-300M-25Hz recipe
multilingual: True
num_languages: 100
language: 'en'
task: 'transcribe'
allowed_special: 'all'
tokenize: !name:cosyvoice.dataset.processor.tokenize
get_tokenizer: !ref <get_tokenizer>
allowed_special: !ref <allowed_special>
filter: !name:cosyvoice.dataset.processor.filter
max_length: 40960
min_length: 0
token_max_length: 200
token_min_length: 1
resample: !name:cosyvoice.dataset.processor.resample
resample_rate: !ref <sample_rate>
feat_extractor: !name:matcha.utils.audio.mel_spectrogram
n_fft: 1024
num_mels: 80
sampling_rate: !ref <sample_rate>
hop_size: 256
win_size: 1024
fmin: 0
fmax: 8000
center: False
compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
feat_extractor: !ref <feat_extractor>
parse_embedding: !name:cosyvoice.dataset.processor.parse_embedding
normalize: True
shuffle: !name:cosyvoice.dataset.processor.shuffle
shuffle_size: 1000
sort: !name:cosyvoice.dataset.processor.sort
sort_size: 500 # sort_size should be less than shuffle_size
batch: !name:cosyvoice.dataset.processor.batch
batch_type: 'dynamic'
max_frames_in_batch: 2000
padding: !name:cosyvoice.dataset.processor.padding
use_spk_embedding: False # change to True during sft
# dataset processor pipeline
data_pipeline: [
!ref <parquet_opener>,
!ref <tokenize>,
!ref <filter>,
!ref <resample>,
!ref <compute_fbank>,
!ref <parse_embedding>,
!ref <shuffle>,
!ref <sort>,
!ref <batch>,
!ref <padding>,
]
# train conf
train_conf:
optim: adam
optim_conf:
lr: 0.001 # change to 1e-5 during sft
scheduler: warmuplr # change to constantlr during sft
scheduler_conf:
warmup_steps: 2500
max_epoch: 200
grad_clip: 5
accum_grad: 2
log_interval: 100
save_per_step: -1

View File

@@ -1,42 +0,0 @@
{
"train_micro_batch_size_per_gpu": 1,
"gradient_accumulation_steps": 1,
"steps_per_print": 100,
"gradient_clipping": 5,
"fp16": {
"enabled": false,
"auto_cast": false,
"loss_scale": 0,
"initial_scale_power": 16,
"loss_scale_window": 256,
"hysteresis": 2,
"consecutive_hysteresis": false,
"min_loss_scale": 1
},
"bf16": {
"enabled": false
},
"zero_force_ds_cpu_optimizer": false,
"zero_optimization": {
"stage": 2,
"offload_optimizer": {
"device": "none",
"pin_memory": true
},
"allgather_partitions": true,
"allgather_bucket_size": 5e8,
"overlap_comm": false,
"reduce_scatter": true,
"reduce_bucket_size": 5e8,
"contiguous_gradients" : true
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": 0.001,
"weight_decay": 0.0001,
"torch_adam": true,
"adam_w_mode": true
}
}
}

View File

@@ -1,3 +0,0 @@
# NOTE(kan-bayashi): Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
export PYTHONIOENCODING=UTF-8
export PYTHONPATH=../../../:../../../third_party/Matcha-TTS:$PYTHONPATH

View File

@@ -0,0 +1 @@
../../libritts/cosyvoice/path.sh

View File

@@ -83,7 +83,7 @@ if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
fi fi
cp data/train/parquet/data.list data/train.data.list cp data/train/parquet/data.list data/train.data.list
cp data/dev/parquet/data.list data/dev.data.list cp data/dev/parquet/data.list data/dev.data.list
for model in llm flow; do for model in llm flow hifigan; do
torchrun --nnodes=1 --nproc_per_node=$num_gpus \ torchrun --nnodes=1 --nproc_per_node=$num_gpus \
--rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:0" \ --rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:0" \
cosyvoice/bin/train.py \ cosyvoice/bin/train.py \
@@ -99,11 +99,26 @@ if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
--num_workers ${num_workers} \ --num_workers ${num_workers} \
--prefetch ${prefetch} \ --prefetch ${prefetch} \
--pin_memory \ --pin_memory \
--use_amp \
--deepspeed_config ./conf/ds_stage2.json \ --deepspeed_config ./conf/ds_stage2.json \
--deepspeed.save_states model+optimizer --deepspeed.save_states model+optimizer
done done
fi fi
# average model
average_num=5
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
for model in llm flow hifigan; do
decode_checkpoint=`pwd`/exp/cosyvoice/$model/$train_engine/${model}.pt
echo "do model average and final checkpoint is $decode_checkpoint"
python cosyvoice/bin/average_model.py \
--dst_model $decode_checkpoint \
--src_path `pwd`/exp/cosyvoice/$model/$train_engine \
--num ${average_num} \
--val_best
done
fi
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
echo "Export your model for inference speedup. Remember copy your llm or flow model to model_dir" echo "Export your model for inference speedup. Remember copy your llm or flow model to model_dir"
python cosyvoice/bin/export_jit.py --model_dir $pretrained_model_dir python cosyvoice/bin/export_jit.py --model_dir $pretrained_model_dir

View File

@@ -34,10 +34,10 @@ logging.basicConfig(level=logging.DEBUG,
class CosyVoiceServiceImpl(cosyvoice_pb2_grpc.CosyVoiceServicer): class CosyVoiceServiceImpl(cosyvoice_pb2_grpc.CosyVoiceServicer):
def __init__(self, args): def __init__(self, args):
try: try:
self.cosyvoice = CosyVoice(args.model_dir) self.cosyvoice = CosyVoice(args.model_dir, trt_concurrent=args.max_conc)
except Exception: except Exception:
try: try:
self.cosyvoice = CosyVoice2(args.model_dir) self.cosyvoice = CosyVoice2(args.model_dir, trt_concurrent=args.max_conc)
except Exception: except Exception:
raise TypeError('no valid model_type!') raise TypeError('no valid model_type!')
logging.info('grpc service initialized') logging.info('grpc service initialized')