mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-05 18:09:24 +08:00
Merge pull request #1140 from FunAudioLLM/dev/lyuxiang.lx
Dev/lyuxiang.lx
This commit is contained in:
@@ -128,7 +128,7 @@ import torchaudio
|
|||||||
|
|
||||||
**CosyVoice2 Usage**
|
**CosyVoice2 Usage**
|
||||||
```python
|
```python
|
||||||
cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=False, load_trt=False, fp16=False)
|
cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=False, load_trt=False, fp16=False, use_flow_cache=False)
|
||||||
|
|
||||||
# NOTE if you want to reproduce the results on https://funaudiollm.github.io/cosyvoice2, please add text_frontend=False during inference
|
# NOTE if you want to reproduce the results on https://funaudiollm.github.io/cosyvoice2, please add text_frontend=False during inference
|
||||||
# zero_shot usage
|
# zero_shot usage
|
||||||
|
|||||||
@@ -75,10 +75,11 @@ def main():
|
|||||||
print('Processing {}'.format(path))
|
print('Processing {}'.format(path))
|
||||||
states = torch.load(path, map_location=torch.device('cpu'))
|
states = torch.load(path, map_location=torch.device('cpu'))
|
||||||
for k in states.keys():
|
for k in states.keys():
|
||||||
if k not in avg.keys():
|
if k not in ['step', 'epoch']:
|
||||||
avg[k] = states[k].clone()
|
if k not in avg.keys():
|
||||||
else:
|
avg[k] = states[k].clone()
|
||||||
avg[k] += states[k]
|
else:
|
||||||
|
avg[k] += states[k]
|
||||||
# average
|
# average
|
||||||
for k in avg.keys():
|
for k in avg.keys():
|
||||||
if avg[k] is not None:
|
if avg[k] is not None:
|
||||||
|
|||||||
@@ -24,6 +24,7 @@ ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
|||||||
sys.path.append('{}/../..'.format(ROOT_DIR))
|
sys.path.append('{}/../..'.format(ROOT_DIR))
|
||||||
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
||||||
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
||||||
|
from cosyvoice.utils.file_utils import logging
|
||||||
|
|
||||||
|
|
||||||
def get_args():
|
def get_args():
|
||||||
@@ -60,7 +61,8 @@ def main():
|
|||||||
model = CosyVoice(args.model_dir)
|
model = CosyVoice(args.model_dir)
|
||||||
except Exception:
|
except Exception:
|
||||||
try:
|
try:
|
||||||
model = CosyVoice2(args.model_dir)
|
# NOTE set use_flow_cache=True when export jit for cache inference
|
||||||
|
model = CosyVoice2(args.model_dir, use_flow_cache=True)
|
||||||
except Exception:
|
except Exception:
|
||||||
raise TypeError('no valid model_type!')
|
raise TypeError('no valid model_type!')
|
||||||
|
|
||||||
@@ -71,6 +73,7 @@ def main():
|
|||||||
script.save('{}/llm.text_encoder.fp32.zip'.format(args.model_dir))
|
script.save('{}/llm.text_encoder.fp32.zip'.format(args.model_dir))
|
||||||
script = get_optimized_script(llm_text_encoder.half())
|
script = get_optimized_script(llm_text_encoder.half())
|
||||||
script.save('{}/llm.text_encoder.fp16.zip'.format(args.model_dir))
|
script.save('{}/llm.text_encoder.fp16.zip'.format(args.model_dir))
|
||||||
|
logging.info('successfully export llm_text_encoder')
|
||||||
|
|
||||||
# 2. export llm llm
|
# 2. export llm llm
|
||||||
llm_llm = model.model.llm.llm
|
llm_llm = model.model.llm.llm
|
||||||
@@ -78,13 +81,23 @@ def main():
|
|||||||
script.save('{}/llm.llm.fp32.zip'.format(args.model_dir))
|
script.save('{}/llm.llm.fp32.zip'.format(args.model_dir))
|
||||||
script = get_optimized_script(llm_llm.half(), ['forward_chunk'])
|
script = get_optimized_script(llm_llm.half(), ['forward_chunk'])
|
||||||
script.save('{}/llm.llm.fp16.zip'.format(args.model_dir))
|
script.save('{}/llm.llm.fp16.zip'.format(args.model_dir))
|
||||||
|
logging.info('successfully export llm_llm')
|
||||||
|
|
||||||
# 3. export flow encoder
|
# 3. export flow encoder
|
||||||
flow_encoder = model.model.flow.encoder
|
flow_encoder = model.model.flow.encoder
|
||||||
script = get_optimized_script(flow_encoder)
|
script = get_optimized_script(flow_encoder)
|
||||||
script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
|
script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
|
||||||
script = get_optimized_script(flow_encoder.half())
|
script = get_optimized_script(flow_encoder.half())
|
||||||
script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir))
|
script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir))
|
||||||
|
logging.info('successfully export flow_encoder')
|
||||||
|
else:
|
||||||
|
# 3. export flow encoder
|
||||||
|
flow_encoder = model.model.flow.encoder
|
||||||
|
script = get_optimized_script(flow_encoder, ['forward_chunk'])
|
||||||
|
script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
|
||||||
|
script = get_optimized_script(flow_encoder.half(), ['forward_chunk'])
|
||||||
|
script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir))
|
||||||
|
logging.info('successfully export flow_encoder')
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|||||||
@@ -28,6 +28,7 @@ ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
|||||||
sys.path.append('{}/../..'.format(ROOT_DIR))
|
sys.path.append('{}/../..'.format(ROOT_DIR))
|
||||||
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
||||||
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
||||||
|
from cosyvoice.utils.file_utils import logging
|
||||||
|
|
||||||
|
|
||||||
def get_dummy_input(batch_size, seq_len, out_channels, device):
|
def get_dummy_input(batch_size, seq_len, out_channels, device):
|
||||||
@@ -51,6 +52,7 @@ def get_args():
|
|||||||
return args
|
return args
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
def main():
|
def main():
|
||||||
args = get_args()
|
args = get_args()
|
||||||
logging.basicConfig(level=logging.DEBUG,
|
logging.basicConfig(level=logging.DEBUG,
|
||||||
@@ -60,56 +62,132 @@ def main():
|
|||||||
model = CosyVoice(args.model_dir)
|
model = CosyVoice(args.model_dir)
|
||||||
except Exception:
|
except Exception:
|
||||||
try:
|
try:
|
||||||
model = CosyVoice2(args.model_dir)
|
# NOTE set use_flow_cache=True when export jit for cache inference
|
||||||
|
model = CosyVoice2(args.model_dir, use_flow_cache=True)
|
||||||
except Exception:
|
except Exception:
|
||||||
raise TypeError('no valid model_type!')
|
raise TypeError('no valid model_type!')
|
||||||
|
|
||||||
# 1. export flow decoder estimator
|
if not isinstance(model, CosyVoice2):
|
||||||
estimator = model.model.flow.decoder.estimator
|
# 1. export flow decoder estimator
|
||||||
|
estimator = model.model.flow.decoder.estimator
|
||||||
|
estimator.eval()
|
||||||
|
|
||||||
device = model.model.device
|
device = model.model.device
|
||||||
batch_size, seq_len = 2, 256
|
batch_size, seq_len = 2, 256
|
||||||
out_channels = model.model.flow.decoder.estimator.out_channels
|
out_channels = model.model.flow.decoder.estimator.out_channels
|
||||||
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, seq_len, out_channels, device)
|
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, seq_len, out_channels, device)
|
||||||
torch.onnx.export(
|
torch.onnx.export(
|
||||||
estimator,
|
estimator,
|
||||||
(x, mask, mu, t, spks, cond),
|
(x, mask, mu, t, spks, cond),
|
||||||
'{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
'{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
||||||
export_params=True,
|
export_params=True,
|
||||||
opset_version=18,
|
opset_version=18,
|
||||||
do_constant_folding=True,
|
do_constant_folding=True,
|
||||||
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
|
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
|
||||||
output_names=['estimator_out'],
|
output_names=['estimator_out'],
|
||||||
dynamic_axes={
|
dynamic_axes={
|
||||||
'x': {2: 'seq_len'},
|
'x': {2: 'seq_len'},
|
||||||
'mask': {2: 'seq_len'},
|
'mask': {2: 'seq_len'},
|
||||||
'mu': {2: 'seq_len'},
|
'mu': {2: 'seq_len'},
|
||||||
'cond': {2: 'seq_len'},
|
'cond': {2: 'seq_len'},
|
||||||
'estimator_out': {2: 'seq_len'},
|
'estimator_out': {2: 'seq_len'},
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
|
||||||
# 2. test computation consistency
|
# 2. test computation consistency
|
||||||
option = onnxruntime.SessionOptions()
|
option = onnxruntime.SessionOptions()
|
||||||
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
||||||
option.intra_op_num_threads = 1
|
option.intra_op_num_threads = 1
|
||||||
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
|
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
|
||||||
estimator_onnx = onnxruntime.InferenceSession('{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
estimator_onnx = onnxruntime.InferenceSession('{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
||||||
sess_options=option, providers=providers)
|
sess_options=option, providers=providers)
|
||||||
|
|
||||||
for _ in tqdm(range(10)):
|
for _ in tqdm(range(10)):
|
||||||
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, random.randint(16, 512), out_channels, device)
|
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, random.randint(16, 512), out_channels, device)
|
||||||
output_pytorch = estimator(x, mask, mu, t, spks, cond)
|
output_pytorch = estimator(x, mask, mu, t, spks, cond)
|
||||||
ort_inputs = {
|
ort_inputs = {
|
||||||
'x': x.cpu().numpy(),
|
'x': x.cpu().numpy(),
|
||||||
'mask': mask.cpu().numpy(),
|
'mask': mask.cpu().numpy(),
|
||||||
'mu': mu.cpu().numpy(),
|
'mu': mu.cpu().numpy(),
|
||||||
't': t.cpu().numpy(),
|
't': t.cpu().numpy(),
|
||||||
'spks': spks.cpu().numpy(),
|
'spks': spks.cpu().numpy(),
|
||||||
'cond': cond.cpu().numpy()
|
'cond': cond.cpu().numpy()
|
||||||
}
|
}
|
||||||
output_onnx = estimator_onnx.run(None, ort_inputs)[0]
|
output_onnx = estimator_onnx.run(None, ort_inputs)[0]
|
||||||
torch.testing.assert_allclose(output_pytorch, torch.from_numpy(output_onnx).to(device), rtol=1e-2, atol=1e-4)
|
torch.testing.assert_allclose(output_pytorch, torch.from_numpy(output_onnx).to(device), rtol=1e-2, atol=1e-4)
|
||||||
|
logging.info('successfully export estimator')
|
||||||
|
else:
|
||||||
|
# 1. export flow decoder estimator
|
||||||
|
estimator = model.model.flow.decoder.estimator
|
||||||
|
estimator.forward = estimator.forward_chunk
|
||||||
|
estimator.eval()
|
||||||
|
|
||||||
|
device = model.model.device
|
||||||
|
batch_size, seq_len = 2, 256
|
||||||
|
out_channels = model.model.flow.decoder.estimator.out_channels
|
||||||
|
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, seq_len, out_channels, device)
|
||||||
|
cache = model.model.init_flow_cache()['decoder_cache']
|
||||||
|
cache.pop('offset')
|
||||||
|
cache = {k: v[0] for k, v in cache.items()}
|
||||||
|
torch.onnx.export(
|
||||||
|
estimator,
|
||||||
|
(x, mask, mu, t, spks, cond,
|
||||||
|
cache['down_blocks_conv_cache'],
|
||||||
|
cache['down_blocks_kv_cache'],
|
||||||
|
cache['mid_blocks_conv_cache'],
|
||||||
|
cache['mid_blocks_kv_cache'],
|
||||||
|
cache['up_blocks_conv_cache'],
|
||||||
|
cache['up_blocks_kv_cache'],
|
||||||
|
cache['final_blocks_conv_cache']),
|
||||||
|
'{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
||||||
|
export_params=True,
|
||||||
|
opset_version=18,
|
||||||
|
do_constant_folding=True,
|
||||||
|
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond', 'down_blocks_conv_cache', 'down_blocks_kv_cache', 'mid_blocks_conv_cache', 'mid_blocks_kv_cache',
|
||||||
|
'up_blocks_conv_cache', 'up_blocks_kv_cache', 'final_blocks_conv_cache'],
|
||||||
|
output_names=['estimator_out', 'down_blocks_conv_cache_out', 'down_blocks_kv_cache_out', 'mid_blocks_conv_cache_out', 'mid_blocks_kv_cache_out',
|
||||||
|
'up_blocks_conv_cache_out', 'up_blocks_kv_cache_out', 'final_blocks_conv_cache_out'],
|
||||||
|
dynamic_axes={
|
||||||
|
'x': {2: 'seq_len'},
|
||||||
|
'mask': {2: 'seq_len'},
|
||||||
|
'mu': {2: 'seq_len'},
|
||||||
|
'cond': {2: 'seq_len'},
|
||||||
|
'down_blocks_kv_cache': {3: 'cache_in_len'},
|
||||||
|
'mid_blocks_kv_cache': {3: 'cache_in_len'},
|
||||||
|
'up_blocks_kv_cache': {3: 'cache_in_len'},
|
||||||
|
'estimator_out': {2: 'seq_len'},
|
||||||
|
'down_blocks_kv_cache_out': {3: 'cache_out_len'},
|
||||||
|
'mid_blocks_kv_cache_out': {3: 'cache_out_len'},
|
||||||
|
'up_blocks_kv_cache_out': {3: 'cache_out_len'},
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
# 2. test computation consistency
|
||||||
|
option = onnxruntime.SessionOptions()
|
||||||
|
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
||||||
|
option.intra_op_num_threads = 1
|
||||||
|
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
|
||||||
|
estimator_onnx = onnxruntime.InferenceSession('{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
||||||
|
sess_options=option, providers=providers)
|
||||||
|
|
||||||
|
for _ in tqdm(range(10)):
|
||||||
|
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, random.randint(16, 512), out_channels, device)
|
||||||
|
cache = model.model.init_flow_cache()['decoder_cache']
|
||||||
|
cache.pop('offset')
|
||||||
|
cache = {k: v[0] for k, v in cache.items()}
|
||||||
|
output_pytorch = estimator(x, mask, mu, t, spks, cond, **{k: v.clone() for k, v in cache.items()})
|
||||||
|
ort_inputs = {
|
||||||
|
'x': x.cpu().numpy(),
|
||||||
|
'mask': mask.cpu().numpy(),
|
||||||
|
'mu': mu.cpu().numpy(),
|
||||||
|
't': t.cpu().numpy(),
|
||||||
|
'spks': spks.cpu().numpy(),
|
||||||
|
'cond': cond.cpu().numpy(),
|
||||||
|
}
|
||||||
|
output_onnx = estimator_onnx.run(None, {**ort_inputs, **{k: v.clone().cpu().numpy() for k, v in cache.items()}})
|
||||||
|
for i, j in zip(output_pytorch, output_onnx):
|
||||||
|
torch.testing.assert_allclose(i, torch.from_numpy(j).to(device), rtol=1e-2, atol=1e-4)
|
||||||
|
logging.info('successfully export estimator')
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|||||||
@@ -1,10 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
# Copyright 2024 Alibaba Inc. All Rights Reserved.
|
|
||||||
# download tensorrt from https://developer.nvidia.com/tensorrt/download/10x, check your system and cuda for compatibability
|
|
||||||
# for example for linux + cuda12.4, you can download https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.0.1/tars/TensorRT-10.0.1.6.Linux.x86_64-gnu.cuda-12.4.tar.gz
|
|
||||||
TRT_DIR=<YOUR_TRT_DIR>
|
|
||||||
MODEL_DIR=<COSYVOICE2_MODEL_DIR>
|
|
||||||
|
|
||||||
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TRT_DIR/lib:/usr/local/cuda/lib64
|
|
||||||
$TRT_DIR/bin/trtexec --onnx=$MODEL_DIR/flow.decoder.estimator.fp32.onnx --saveEngine=$MODEL_DIR/flow.decoder.estimator.fp32.mygpu.plan --minShapes=x:2x80x4,mask:2x1x4,mu:2x80x4,cond:2x80x4 --optShapes=x:2x80x193,mask:2x1x193,mu:2x80x193,cond:2x80x193 --maxShapes=x:2x80x6800,mask:2x1x6800,mu:2x80x6800,cond:2x80x6800 --inputIOFormats=fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw --outputIOFormats=fp32:chw
|
|
||||||
$TRT_DIR/bin/trtexec --onnx=$MODEL_DIR/flow.decoder.estimator.fp32.onnx --saveEngine=$MODEL_DIR/flow.decoder.estimator.fp16.mygpu.plan --fp16 --minShapes=x:2x80x4,mask:2x1x4,mu:2x80x4,cond:2x80x4 --optShapes=x:2x80x193,mask:2x1x193,mu:2x80x193,cond:2x80x193 --maxShapes=x:2x80x6800,mask:2x1x6800,mu:2x80x6800,cond:2x80x6800 --inputIOFormats=fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw --outputIOFormats=fp16:chw
|
|
||||||
@@ -23,7 +23,7 @@ from torch.utils.data import DataLoader
|
|||||||
import torchaudio
|
import torchaudio
|
||||||
from hyperpyyaml import load_hyperpyyaml
|
from hyperpyyaml import load_hyperpyyaml
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
from cosyvoice.cli.model import CosyVoiceModel
|
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
|
||||||
from cosyvoice.dataset.dataset import Dataset
|
from cosyvoice.dataset.dataset import Dataset
|
||||||
|
|
||||||
|
|
||||||
@@ -33,6 +33,7 @@ def get_args():
|
|||||||
parser.add_argument('--prompt_data', required=True, help='prompt data file')
|
parser.add_argument('--prompt_data', required=True, help='prompt data file')
|
||||||
parser.add_argument('--prompt_utt2data', required=True, help='prompt data file')
|
parser.add_argument('--prompt_utt2data', required=True, help='prompt data file')
|
||||||
parser.add_argument('--tts_text', required=True, help='tts input file')
|
parser.add_argument('--tts_text', required=True, help='tts input file')
|
||||||
|
parser.add_argument('--qwen_pretrain_path', required=False, help='qwen pretrain path')
|
||||||
parser.add_argument('--llm_model', required=True, help='llm model file')
|
parser.add_argument('--llm_model', required=True, help='llm model file')
|
||||||
parser.add_argument('--flow_model', required=True, help='flow model file')
|
parser.add_argument('--flow_model', required=True, help='flow model file')
|
||||||
parser.add_argument('--hifigan_model', required=True, help='hifigan model file')
|
parser.add_argument('--hifigan_model', required=True, help='hifigan model file')
|
||||||
@@ -59,16 +60,25 @@ def main():
|
|||||||
# Init cosyvoice models from configs
|
# Init cosyvoice models from configs
|
||||||
use_cuda = args.gpu >= 0 and torch.cuda.is_available()
|
use_cuda = args.gpu >= 0 and torch.cuda.is_available()
|
||||||
device = torch.device('cuda' if use_cuda else 'cpu')
|
device = torch.device('cuda' if use_cuda else 'cpu')
|
||||||
with open(args.config, 'r') as f:
|
try:
|
||||||
configs = load_hyperpyyaml(f)
|
with open(args.config, 'r') as f:
|
||||||
|
configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': args.qwen_pretrain_path})
|
||||||
|
model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'], fp16=False)
|
||||||
|
except Exception:
|
||||||
|
try:
|
||||||
|
with open(args.config, 'r') as f:
|
||||||
|
configs = load_hyperpyyaml(f)
|
||||||
|
model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'], fp16=False)
|
||||||
|
except Exception:
|
||||||
|
raise TypeError('no valid model_type!')
|
||||||
|
|
||||||
model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
|
|
||||||
model.load(args.llm_model, args.flow_model, args.hifigan_model)
|
model.load(args.llm_model, args.flow_model, args.hifigan_model)
|
||||||
|
|
||||||
test_dataset = Dataset(args.prompt_data, data_pipeline=configs['data_pipeline'], mode='inference', shuffle=False, partition=False,
|
test_dataset = Dataset(args.prompt_data, data_pipeline=configs['data_pipeline'], mode='inference', shuffle=False, partition=False,
|
||||||
tts_file=args.tts_text, prompt_utt2data=args.prompt_utt2data)
|
tts_file=args.tts_text, prompt_utt2data=args.prompt_utt2data)
|
||||||
test_data_loader = DataLoader(test_dataset, batch_size=None, num_workers=0)
|
test_data_loader = DataLoader(test_dataset, batch_size=None, num_workers=0)
|
||||||
|
|
||||||
|
sample_rate = configs['sample_rate']
|
||||||
del configs
|
del configs
|
||||||
os.makedirs(args.result_dir, exist_ok=True)
|
os.makedirs(args.result_dir, exist_ok=True)
|
||||||
fn = os.path.join(args.result_dir, 'wav.scp')
|
fn = os.path.join(args.result_dir, 'wav.scp')
|
||||||
@@ -104,7 +114,7 @@ def main():
|
|||||||
tts_speeches = torch.concat(tts_speeches, dim=1)
|
tts_speeches = torch.concat(tts_speeches, dim=1)
|
||||||
tts_key = '{}_{}'.format(utts[0], tts_index[0])
|
tts_key = '{}_{}'.format(utts[0], tts_index[0])
|
||||||
tts_fn = os.path.join(args.result_dir, '{}.wav'.format(tts_key))
|
tts_fn = os.path.join(args.result_dir, '{}.wav'.format(tts_key))
|
||||||
torchaudio.save(tts_fn, tts_speeches, sample_rate=22050)
|
torchaudio.save(tts_fn, tts_speeches, sample_rate=sample_rate, backend='soundfile')
|
||||||
f.write('{} {}\n'.format(tts_key, tts_fn))
|
f.write('{} {}\n'.format(tts_key, tts_fn))
|
||||||
f.flush()
|
f.flush()
|
||||||
f.close()
|
f.close()
|
||||||
|
|||||||
@@ -46,6 +46,7 @@ def get_args():
|
|||||||
parser.add_argument('--config', required=True, help='config file')
|
parser.add_argument('--config', required=True, help='config file')
|
||||||
parser.add_argument('--train_data', required=True, help='train data file')
|
parser.add_argument('--train_data', required=True, help='train data file')
|
||||||
parser.add_argument('--cv_data', required=True, help='cv data file')
|
parser.add_argument('--cv_data', required=True, help='cv data file')
|
||||||
|
parser.add_argument('--qwen_pretrain_path', required=False, help='qwen pretrain path')
|
||||||
parser.add_argument('--checkpoint', help='checkpoint model')
|
parser.add_argument('--checkpoint', help='checkpoint model')
|
||||||
parser.add_argument('--model_dir', required=True, help='save model dir')
|
parser.add_argument('--model_dir', required=True, help='save model dir')
|
||||||
parser.add_argument('--tensorboard_dir',
|
parser.add_argument('--tensorboard_dir',
|
||||||
@@ -97,8 +98,12 @@ def main():
|
|||||||
override_dict = {k: None for k in ['llm', 'flow', 'hift', 'hifigan'] if k != args.model}
|
override_dict = {k: None for k in ['llm', 'flow', 'hift', 'hifigan'] if k != args.model}
|
||||||
if gan is True:
|
if gan is True:
|
||||||
override_dict.pop('hift')
|
override_dict.pop('hift')
|
||||||
with open(args.config, 'r') as f:
|
try:
|
||||||
configs = load_hyperpyyaml(f, overrides=override_dict)
|
with open(args.config, 'r') as f:
|
||||||
|
configs = load_hyperpyyaml(f, overrides={**override_dict, 'qwen_pretrain_path': args.qwen_pretrain_path})
|
||||||
|
except Exception:
|
||||||
|
with open(args.config, 'r') as f:
|
||||||
|
configs = load_hyperpyyaml(f, overrides=override_dict)
|
||||||
if gan is True:
|
if gan is True:
|
||||||
configs['train_conf'] = configs['train_conf_gan']
|
configs['train_conf'] = configs['train_conf_gan']
|
||||||
configs['train_conf'].update(vars(args))
|
configs['train_conf'].update(vars(args))
|
||||||
|
|||||||
@@ -32,7 +32,10 @@ class CosyVoice:
|
|||||||
self.fp16 = fp16
|
self.fp16 = fp16
|
||||||
if not os.path.exists(model_dir):
|
if not os.path.exists(model_dir):
|
||||||
model_dir = snapshot_download(model_dir)
|
model_dir = snapshot_download(model_dir)
|
||||||
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
|
hyper_yaml_path = '{}/cosyvoice.yaml'.format(model_dir)
|
||||||
|
if not os.path.exists(hyper_yaml_path):
|
||||||
|
raise ValueError('{} not found!'.format(hyper_yaml_path))
|
||||||
|
with open(hyper_yaml_path, 'r') as f:
|
||||||
configs = load_hyperpyyaml(f)
|
configs = load_hyperpyyaml(f)
|
||||||
assert get_model_type(configs) != CosyVoice2Model, 'do not use {} for CosyVoice initialization!'.format(model_dir)
|
assert get_model_type(configs) != CosyVoice2Model, 'do not use {} for CosyVoice initialization!'.format(model_dir)
|
||||||
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
||||||
@@ -126,13 +129,16 @@ class CosyVoice:
|
|||||||
|
|
||||||
class CosyVoice2(CosyVoice):
|
class CosyVoice2(CosyVoice):
|
||||||
|
|
||||||
def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False):
|
def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False, use_flow_cache=False):
|
||||||
self.instruct = True if '-Instruct' in model_dir else False
|
self.instruct = True if '-Instruct' in model_dir else False
|
||||||
self.model_dir = model_dir
|
self.model_dir = model_dir
|
||||||
self.fp16 = fp16
|
self.fp16 = fp16
|
||||||
if not os.path.exists(model_dir):
|
if not os.path.exists(model_dir):
|
||||||
model_dir = snapshot_download(model_dir)
|
model_dir = snapshot_download(model_dir)
|
||||||
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
|
hyper_yaml_path = '{}/cosyvoice2.yaml'.format(model_dir)
|
||||||
|
if not os.path.exists(hyper_yaml_path):
|
||||||
|
raise ValueError('{} not found!'.format(hyper_yaml_path))
|
||||||
|
with open(hyper_yaml_path, 'r') as f:
|
||||||
configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')})
|
configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')})
|
||||||
assert get_model_type(configs) == CosyVoice2Model, 'do not use {} for CosyVoice2 initialization!'.format(model_dir)
|
assert get_model_type(configs) == CosyVoice2Model, 'do not use {} for CosyVoice2 initialization!'.format(model_dir)
|
||||||
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
||||||
@@ -145,9 +151,9 @@ class CosyVoice2(CosyVoice):
|
|||||||
if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or fp16 is True):
|
if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or fp16 is True):
|
||||||
load_jit, load_trt, fp16 = False, False, False
|
load_jit, load_trt, fp16 = False, False, False
|
||||||
logging.warning('no cuda device, set load_jit/load_trt/fp16 to False')
|
logging.warning('no cuda device, set load_jit/load_trt/fp16 to False')
|
||||||
self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'], fp16)
|
self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'], fp16, use_flow_cache)
|
||||||
self.model.load('{}/llm.pt'.format(model_dir),
|
self.model.load('{}/llm.pt'.format(model_dir),
|
||||||
'{}/flow.pt'.format(model_dir),
|
'{}/flow.pt'.format(model_dir) if use_flow_cache is False else '{}/flow.cache.pt'.format(model_dir),
|
||||||
'{}/hift.pt'.format(model_dir))
|
'{}/hift.pt'.format(model_dir))
|
||||||
if load_jit:
|
if load_jit:
|
||||||
self.model.load_jit('{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
|
self.model.load_jit('{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
|
||||||
|
|||||||
@@ -36,16 +36,12 @@ class CosyVoiceModel:
|
|||||||
self.flow = flow
|
self.flow = flow
|
||||||
self.hift = hift
|
self.hift = hift
|
||||||
self.fp16 = fp16
|
self.fp16 = fp16
|
||||||
self.llm.fp16 = fp16
|
|
||||||
self.flow.fp16 = fp16
|
|
||||||
if self.fp16 is True:
|
if self.fp16 is True:
|
||||||
self.llm.half()
|
self.llm.half()
|
||||||
self.flow.half()
|
self.flow.half()
|
||||||
self.token_min_hop_len = 2 * self.flow.input_frame_rate
|
self.token_min_hop_len = 2 * self.flow.input_frame_rate
|
||||||
self.token_max_hop_len = 4 * self.flow.input_frame_rate
|
self.token_max_hop_len = 4 * self.flow.input_frame_rate
|
||||||
self.token_overlap_len = 20
|
self.token_overlap_len = 20
|
||||||
# here we fix set flow.decoder.estimator.static_chunk_size = 0 for compatibability
|
|
||||||
self.flow.decoder.estimator.static_chunk_size = 0
|
|
||||||
# mel fade in out
|
# mel fade in out
|
||||||
self.mel_overlap_len = int(self.token_overlap_len / self.flow.input_frame_rate * 22050 / 256)
|
self.mel_overlap_len = int(self.token_overlap_len / self.flow.input_frame_rate * 22050 / 256)
|
||||||
self.mel_window = np.hamming(2 * self.mel_overlap_len)
|
self.mel_window = np.hamming(2 * self.mel_overlap_len)
|
||||||
@@ -87,19 +83,25 @@ class CosyVoiceModel:
|
|||||||
def load_trt(self, flow_decoder_estimator_model, flow_decoder_onnx_model, fp16):
|
def load_trt(self, flow_decoder_estimator_model, flow_decoder_onnx_model, fp16):
|
||||||
assert torch.cuda.is_available(), 'tensorrt only supports gpu!'
|
assert torch.cuda.is_available(), 'tensorrt only supports gpu!'
|
||||||
if not os.path.exists(flow_decoder_estimator_model):
|
if not os.path.exists(flow_decoder_estimator_model):
|
||||||
convert_onnx_to_trt(flow_decoder_estimator_model, flow_decoder_onnx_model, fp16)
|
convert_onnx_to_trt(flow_decoder_estimator_model, self.get_trt_kwargs(), flow_decoder_onnx_model, fp16)
|
||||||
if os.path.getsize(flow_decoder_estimator_model) == 0:
|
if os.path.getsize(flow_decoder_estimator_model) == 0:
|
||||||
raise ValueError('{} is empty file, delete it and export again!'.format(flow_decoder_estimator_model))
|
raise ValueError('{} is empty file, delete it and export again!'.format(flow_decoder_estimator_model))
|
||||||
del self.flow.decoder.estimator
|
del self.flow.decoder.estimator
|
||||||
import tensorrt as trt
|
import tensorrt as trt
|
||||||
with open(flow_decoder_estimator_model, 'rb') as f:
|
with open(flow_decoder_estimator_model, 'rb') as f:
|
||||||
self.flow.decoder.estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
|
self.flow.decoder.estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
|
||||||
if self.flow.decoder.estimator_engine is None:
|
assert self.flow.decoder.estimator_engine is not None, 'failed to load trt {}'.format(flow_decoder_estimator_model)
|
||||||
raise ValueError('failed to load trt {}'.format(flow_decoder_estimator_model))
|
|
||||||
self.flow.decoder.estimator = self.flow.decoder.estimator_engine.create_execution_context()
|
self.flow.decoder.estimator = self.flow.decoder.estimator_engine.create_execution_context()
|
||||||
|
|
||||||
|
def get_trt_kwargs(self):
|
||||||
|
min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2, 80, 4)]
|
||||||
|
opt_shape = [(2, 80, 200), (2, 1, 200), (2, 80, 200), (2, 80, 200)]
|
||||||
|
max_shape = [(2, 80, 3000), (2, 1, 3000), (2, 80, 3000), (2, 80, 3000)]
|
||||||
|
input_names = ["x", "mask", "mu", "cond"]
|
||||||
|
return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}
|
||||||
|
|
||||||
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
||||||
with self.llm_context:
|
with self.llm_context, torch.cuda.amp.autocast(self.fp16):
|
||||||
if isinstance(text, Generator):
|
if isinstance(text, Generator):
|
||||||
assert isinstance(self, CosyVoice2Model), 'streaming input text is only implemented for CosyVoice2!'
|
assert isinstance(self, CosyVoice2Model), 'streaming input text is only implemented for CosyVoice2!'
|
||||||
for i in self.llm.inference_bistream(text=text,
|
for i in self.llm.inference_bistream(text=text,
|
||||||
@@ -121,15 +123,15 @@ class CosyVoiceModel:
|
|||||||
self.llm_end_dict[uuid] = True
|
self.llm_end_dict[uuid] = True
|
||||||
|
|
||||||
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0):
|
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0):
|
||||||
tts_mel, flow_cache = self.flow.inference(token=token.to(self.device),
|
with torch.cuda.amp.autocast(self.fp16):
|
||||||
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
tts_mel, self.flow_cache_dict[uuid] = self.flow.inference(token=token.to(self.device),
|
||||||
prompt_token=prompt_token.to(self.device),
|
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
prompt_token=prompt_token.to(self.device),
|
||||||
prompt_feat=prompt_feat.to(self.device),
|
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
prompt_feat=prompt_feat.to(self.device),
|
||||||
embedding=embedding.to(self.device),
|
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
flow_cache=self.flow_cache_dict[uuid])
|
embedding=embedding.to(self.device),
|
||||||
self.flow_cache_dict[uuid] = flow_cache
|
flow_cache=self.flow_cache_dict[uuid])
|
||||||
|
|
||||||
# mel overlap fade in out
|
# mel overlap fade in out
|
||||||
if self.mel_overlap_dict[uuid].shape[2] != 0:
|
if self.mel_overlap_dict[uuid].shape[2] != 0:
|
||||||
@@ -276,6 +278,7 @@ class CosyVoiceModel:
|
|||||||
self.llm_end_dict.pop(this_uuid)
|
self.llm_end_dict.pop(this_uuid)
|
||||||
self.mel_overlap_dict.pop(this_uuid)
|
self.mel_overlap_dict.pop(this_uuid)
|
||||||
self.hift_cache_dict.pop(this_uuid)
|
self.hift_cache_dict.pop(this_uuid)
|
||||||
|
self.flow_cache_dict.pop(this_uuid)
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
|
|
||||||
@@ -285,49 +288,88 @@ class CosyVoice2Model(CosyVoiceModel):
|
|||||||
llm: torch.nn.Module,
|
llm: torch.nn.Module,
|
||||||
flow: torch.nn.Module,
|
flow: torch.nn.Module,
|
||||||
hift: torch.nn.Module,
|
hift: torch.nn.Module,
|
||||||
fp16: bool):
|
fp16: bool,
|
||||||
|
use_flow_cache: bool):
|
||||||
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||||
self.llm = llm
|
self.llm = llm
|
||||||
self.flow = flow
|
self.flow = flow
|
||||||
self.hift = hift
|
self.hift = hift
|
||||||
self.fp16 = fp16
|
self.fp16 = fp16
|
||||||
self.llm.fp16 = fp16
|
self.use_flow_cache = use_flow_cache
|
||||||
self.flow.fp16 = fp16
|
|
||||||
if self.fp16 is True:
|
if self.fp16 is True:
|
||||||
self.llm.half()
|
self.llm.half()
|
||||||
self.flow.half()
|
self.flow.half()
|
||||||
self.token_hop_len = 2 * self.flow.input_frame_rate
|
# stream related params, check examples/libritts/cosyvoice2/conf/cosyvoice2.yaml
|
||||||
# here we fix flow encoder/decoder decoding_chunk_size, in the future we will send it as arguments, or use cache
|
self.token_hop_len = 25
|
||||||
self.flow.encoder.static_chunk_size = 2 * self.flow.input_frame_rate
|
self.flow_decoder_required_cache_size = -1 if use_flow_cache is False else 1 * self.token_hop_len
|
||||||
self.flow.decoder.estimator.static_chunk_size = 2 * self.flow.input_frame_rate * self.flow.token_mel_ratio
|
|
||||||
# hift cache
|
# hift cache
|
||||||
self.mel_cache_len = 8
|
self.mel_cache_len = 8
|
||||||
self.source_cache_len = int(self.mel_cache_len * 480)
|
self.source_cache_len = int(self.mel_cache_len * 480)
|
||||||
# speech fade in out
|
# speech fade in out
|
||||||
self.speech_window = np.hamming(2 * self.source_cache_len)
|
self.speech_window = np.hamming(2 * self.source_cache_len)
|
||||||
# rtf and decoding related
|
# rtf and decoding related
|
||||||
self.stream_scale_factor = 1
|
|
||||||
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
||||||
self.lock = threading.Lock()
|
self.lock = threading.Lock()
|
||||||
# dict used to store session related variable
|
# dict used to store session related variable
|
||||||
self.tts_speech_token_dict = {}
|
self.tts_speech_token_dict = {}
|
||||||
self.llm_end_dict = {}
|
self.llm_end_dict = {}
|
||||||
|
self.flow_cache_dict = {}
|
||||||
self.hift_cache_dict = {}
|
self.hift_cache_dict = {}
|
||||||
|
|
||||||
|
def init_flow_cache(self):
|
||||||
|
encoder_cache = {'offset': 0,
|
||||||
|
'pre_lookahead_layer_conv2_cache': torch.zeros(1, 512, 2).to(self.device),
|
||||||
|
'encoders_kv_cache': torch.zeros(6, 1, 8, 0, 64 * 2).to(self.device),
|
||||||
|
'upsample_offset': 0,
|
||||||
|
'upsample_conv_cache': torch.zeros(1, 512, 4).to(self.device),
|
||||||
|
'upsample_kv_cache': torch.zeros(4, 1, 8, 0, 64 * 2).to(self.device)}
|
||||||
|
decoder_cache = {'offset': 0,
|
||||||
|
'down_blocks_conv_cache': torch.zeros(10, 1, 2, 832, 2).to(self.device),
|
||||||
|
'down_blocks_kv_cache': torch.zeros(10, 1, 4, 2, 0, 512, 2).to(self.device),
|
||||||
|
'mid_blocks_conv_cache': torch.zeros(10, 12, 2, 512, 2).to(self.device),
|
||||||
|
'mid_blocks_kv_cache': torch.zeros(10, 12, 4, 2, 0, 512, 2).to(self.device),
|
||||||
|
'up_blocks_conv_cache': torch.zeros(10, 1, 2, 1024, 2).to(self.device),
|
||||||
|
'up_blocks_kv_cache': torch.zeros(10, 1, 4, 2, 0, 512, 2).to(self.device),
|
||||||
|
'final_blocks_conv_cache': torch.zeros(10, 2, 256, 2).to(self.device)}
|
||||||
|
if self.fp16 is True:
|
||||||
|
for cache in [encoder_cache, decoder_cache]:
|
||||||
|
for k, v in cache.items():
|
||||||
|
if isinstance(v, torch.Tensor):
|
||||||
|
cache[k] = v.half()
|
||||||
|
cache = {'encoder_cache': encoder_cache, 'decoder_cache': decoder_cache}
|
||||||
|
return cache
|
||||||
|
|
||||||
|
def trim_flow_cache(self, cache):
|
||||||
|
if self.flow_decoder_required_cache_size > 0:
|
||||||
|
cache['decoder_cache']['down_blocks_kv_cache'] = cache['decoder_cache']['down_blocks_kv_cache'][:, :, :, :, -self.flow_decoder_required_cache_size:]
|
||||||
|
cache['decoder_cache']['mid_blocks_kv_cache'] = cache['decoder_cache']['mid_blocks_kv_cache'][:, :, :, :, -self.flow_decoder_required_cache_size:]
|
||||||
|
cache['decoder_cache']['up_blocks_kv_cache'] = cache['decoder_cache']['up_blocks_kv_cache'][:, :, :, :, -self.flow_decoder_required_cache_size:]
|
||||||
|
return cache
|
||||||
|
|
||||||
def load_jit(self, flow_encoder_model):
|
def load_jit(self, flow_encoder_model):
|
||||||
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
||||||
self.flow.encoder = flow_encoder
|
self.flow.encoder = flow_encoder
|
||||||
|
|
||||||
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, token_offset, finalize=False, speed=1.0):
|
def get_trt_kwargs(self):
|
||||||
tts_mel, _ = self.flow.inference(token=token.to(self.device),
|
min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2, 80, 4), (1, 4, 2, 0, 512, 2), (12, 4, 2, 0, 512, 2), (1, 4, 2, 0, 512, 2)]
|
||||||
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
opt_shape = [(2, 80, 200), (2, 1, 200), (2, 80, 200), (2, 80, 200), (1, 4, 2, 100, 512, 2), (12, 4, 2, 100, 512, 2), (1, 4, 2, 100, 512, 2)]
|
||||||
prompt_token=prompt_token.to(self.device),
|
max_shape = [(2, 80, 1500), (2, 1, 1500), (2, 80, 1500), (2, 80, 1500), (1, 4, 2, 200, 512, 2), (12, 4, 2, 200, 512, 2), (1, 4, 2, 200, 512, 2)]
|
||||||
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
input_names = ["x", "mask", "mu", "cond", 'down_blocks_kv_cache', 'mid_blocks_kv_cache', 'up_blocks_kv_cache']
|
||||||
prompt_feat=prompt_feat.to(self.device),
|
assert self.use_flow_cache is True, "get_trt_kwargs is set for flow cache mode. If you want to use trt with use_flow_cache=False, please set higher max_shape"
|
||||||
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}
|
||||||
embedding=embedding.to(self.device),
|
|
||||||
finalize=finalize)
|
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0):
|
||||||
tts_mel = tts_mel[:, :, token_offset * self.flow.token_mel_ratio:]
|
with torch.cuda.amp.autocast(self.fp16):
|
||||||
|
tts_mel, self.flow_cache_dict[uuid] = self.flow.inference(token=token.to(self.device),
|
||||||
|
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
|
prompt_token=prompt_token.to(self.device),
|
||||||
|
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
|
prompt_feat=prompt_feat.to(self.device),
|
||||||
|
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
|
embedding=embedding.to(self.device),
|
||||||
|
cache=self.flow_cache_dict[uuid],
|
||||||
|
finalize=finalize)
|
||||||
|
self.flow_cache_dict[uuid] = self.trim_flow_cache(self.flow_cache_dict[uuid])
|
||||||
# append hift cache
|
# append hift cache
|
||||||
if self.hift_cache_dict[uuid] is not None:
|
if self.hift_cache_dict[uuid] is not None:
|
||||||
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
|
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
|
||||||
@@ -359,27 +401,34 @@ class CosyVoice2Model(CosyVoiceModel):
|
|||||||
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
|
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
|
||||||
# this_uuid is used to track variables related to this inference thread
|
# this_uuid is used to track variables related to this inference thread
|
||||||
this_uuid = str(uuid.uuid1())
|
this_uuid = str(uuid.uuid1())
|
||||||
|
# NOTE in cache mode, trim flow_prompt to same size as flow_decoder_required_cache_size
|
||||||
|
if self.use_flow_cache is True:
|
||||||
|
flow_prompt_speech_token = flow_prompt_speech_token[:, -self.flow_decoder_required_cache_size:]
|
||||||
|
prompt_speech_feat = prompt_speech_feat[:, -self.flow_decoder_required_cache_size * 2:]
|
||||||
with self.lock:
|
with self.lock:
|
||||||
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
|
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
|
||||||
self.hift_cache_dict[this_uuid] = None
|
self.hift_cache_dict[this_uuid] = None
|
||||||
|
self.flow_cache_dict[this_uuid] = self.init_flow_cache()
|
||||||
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
|
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
|
||||||
p.start()
|
p.start()
|
||||||
if stream is True:
|
if stream is True:
|
||||||
token_offset = 0
|
|
||||||
while True:
|
while True:
|
||||||
time.sleep(0.1)
|
time.sleep(0.1)
|
||||||
if len(self.tts_speech_token_dict[this_uuid]) - token_offset >= self.token_hop_len + self.flow.pre_lookahead_len:
|
if len(self.tts_speech_token_dict[this_uuid]) >= self.token_hop_len + self.flow.pre_lookahead_len:
|
||||||
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_offset + self.token_hop_len + self.flow.pre_lookahead_len]).unsqueeze(dim=0)
|
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:self.token_hop_len + self.flow.pre_lookahead_len]).unsqueeze(dim=0)
|
||||||
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
||||||
prompt_token=flow_prompt_speech_token,
|
prompt_token=flow_prompt_speech_token,
|
||||||
prompt_feat=prompt_speech_feat,
|
prompt_feat=prompt_speech_feat,
|
||||||
embedding=flow_embedding,
|
embedding=flow_embedding,
|
||||||
uuid=this_uuid,
|
uuid=this_uuid,
|
||||||
token_offset=token_offset,
|
|
||||||
finalize=False)
|
finalize=False)
|
||||||
token_offset += self.token_hop_len
|
# NOTE in cache inference mode, we only use flow_prompt_speech_token/prompt_speech_feat in first chunk
|
||||||
|
flow_prompt_speech_token = torch.zeros(1, 0, dtype=torch.int32).to(self.device)
|
||||||
|
prompt_speech_feat = torch.zeros(1, 0, 80).to(self.device)
|
||||||
yield {'tts_speech': this_tts_speech.cpu()}
|
yield {'tts_speech': this_tts_speech.cpu()}
|
||||||
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) - token_offset < self.token_hop_len + self.flow.pre_lookahead_len:
|
with self.lock:
|
||||||
|
self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][self.token_hop_len:]
|
||||||
|
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < self.token_hop_len + self.flow.pre_lookahead_len:
|
||||||
break
|
break
|
||||||
p.join()
|
p.join()
|
||||||
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
||||||
@@ -389,7 +438,6 @@ class CosyVoice2Model(CosyVoiceModel):
|
|||||||
prompt_feat=prompt_speech_feat,
|
prompt_feat=prompt_speech_feat,
|
||||||
embedding=flow_embedding,
|
embedding=flow_embedding,
|
||||||
uuid=this_uuid,
|
uuid=this_uuid,
|
||||||
token_offset=token_offset,
|
|
||||||
finalize=True)
|
finalize=True)
|
||||||
yield {'tts_speech': this_tts_speech.cpu()}
|
yield {'tts_speech': this_tts_speech.cpu()}
|
||||||
else:
|
else:
|
||||||
@@ -401,11 +449,12 @@ class CosyVoice2Model(CosyVoiceModel):
|
|||||||
prompt_feat=prompt_speech_feat,
|
prompt_feat=prompt_speech_feat,
|
||||||
embedding=flow_embedding,
|
embedding=flow_embedding,
|
||||||
uuid=this_uuid,
|
uuid=this_uuid,
|
||||||
token_offset=0,
|
|
||||||
finalize=True,
|
finalize=True,
|
||||||
speed=speed)
|
speed=speed)
|
||||||
yield {'tts_speech': this_tts_speech.cpu()}
|
yield {'tts_speech': this_tts_speech.cpu()}
|
||||||
with self.lock:
|
with self.lock:
|
||||||
self.tts_speech_token_dict.pop(this_uuid)
|
self.tts_speech_token_dict.pop(this_uuid)
|
||||||
self.llm_end_dict.pop(this_uuid)
|
self.llm_end_dict.pop(this_uuid)
|
||||||
|
self.hift_cache_dict.pop(this_uuid)
|
||||||
|
self.flow_cache_dict.pop(this_uuid)
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
|
|||||||
@@ -196,8 +196,8 @@ def compute_f0(data, sample_rate, hop_size, mode='train'):
|
|||||||
assert 'text_token' in sample
|
assert 'text_token' in sample
|
||||||
waveform = sample['speech']
|
waveform = sample['speech']
|
||||||
_f0, t = pw.harvest(waveform.squeeze(dim=0).numpy().astype('double'), sample_rate, frame_period=frame_period)
|
_f0, t = pw.harvest(waveform.squeeze(dim=0).numpy().astype('double'), sample_rate, frame_period=frame_period)
|
||||||
if sum(_f0 != 0) < 5: # this happens when the algorithm fails
|
if sum(_f0 != 0) < 5: # this happens when the algorithm fails
|
||||||
_f0, t = pw.dio(waveform.squeeze(dim=0).numpy().astype('double'), sample_rate, frame_period=frame_period) # if harvest fails, try dio
|
_f0, t = pw.dio(waveform.squeeze(dim=0).numpy().astype('double'), sample_rate, frame_period=frame_period) # if harvest fails, try dio
|
||||||
f0 = pw.stonemask(waveform.squeeze(dim=0).numpy().astype('double'), _f0, t, sample_rate)
|
f0 = pw.stonemask(waveform.squeeze(dim=0).numpy().astype('double'), _f0, t, sample_rate)
|
||||||
f0 = F.interpolate(torch.from_numpy(f0).view(1, 1, -1), size=sample['speech_feat'].shape[0], mode='linear').view(-1)
|
f0 = F.interpolate(torch.from_numpy(f0).view(1, 1, -1), size=sample['speech_feat'].shape[0], mode='linear').view(-1)
|
||||||
sample['pitch_feat'] = f0
|
sample['pitch_feat'] = f0
|
||||||
|
|||||||
@@ -11,14 +11,16 @@
|
|||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
from typing import Tuple, Optional, Dict, Any
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
from einops import pack, rearrange, repeat
|
from einops import pack, rearrange, repeat
|
||||||
|
from diffusers.models.attention_processor import Attention, AttnProcessor2_0, inspect, logger, deprecate
|
||||||
from cosyvoice.utils.common import mask_to_bias
|
from cosyvoice.utils.common import mask_to_bias
|
||||||
from cosyvoice.utils.mask import add_optional_chunk_mask
|
from cosyvoice.utils.mask import add_optional_chunk_mask
|
||||||
from matcha.models.components.decoder import SinusoidalPosEmb, Block1D, ResnetBlock1D, Downsample1D, TimestepEmbedding, Upsample1D
|
from matcha.models.components.decoder import SinusoidalPosEmb, Block1D, ResnetBlock1D, Downsample1D, TimestepEmbedding, Upsample1D
|
||||||
from matcha.models.components.transformer import BasicTransformerBlock
|
from matcha.models.components.transformer import BasicTransformerBlock, maybe_allow_in_graph
|
||||||
|
|
||||||
|
|
||||||
class Transpose(torch.nn.Module):
|
class Transpose(torch.nn.Module):
|
||||||
@@ -27,34 +29,11 @@ class Transpose(torch.nn.Module):
|
|||||||
self.dim0 = dim0
|
self.dim0 = dim0
|
||||||
self.dim1 = dim1
|
self.dim1 = dim1
|
||||||
|
|
||||||
def forward(self, x: torch.Tensor):
|
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor]:
|
||||||
x = torch.transpose(x, self.dim0, self.dim1)
|
x = torch.transpose(x, self.dim0, self.dim1)
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
|
||||||
class CausalBlock1D(Block1D):
|
|
||||||
def __init__(self, dim: int, dim_out: int):
|
|
||||||
super(CausalBlock1D, self).__init__(dim, dim_out)
|
|
||||||
self.block = torch.nn.Sequential(
|
|
||||||
CausalConv1d(dim, dim_out, 3),
|
|
||||||
Transpose(1, 2),
|
|
||||||
nn.LayerNorm(dim_out),
|
|
||||||
Transpose(1, 2),
|
|
||||||
nn.Mish(),
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(self, x: torch.Tensor, mask: torch.Tensor):
|
|
||||||
output = self.block(x * mask)
|
|
||||||
return output * mask
|
|
||||||
|
|
||||||
|
|
||||||
class CausalResnetBlock1D(ResnetBlock1D):
|
|
||||||
def __init__(self, dim: int, dim_out: int, time_emb_dim: int, groups: int = 8):
|
|
||||||
super(CausalResnetBlock1D, self).__init__(dim, dim_out, time_emb_dim, groups)
|
|
||||||
self.block1 = CausalBlock1D(dim, dim_out)
|
|
||||||
self.block2 = CausalBlock1D(dim_out, dim_out)
|
|
||||||
|
|
||||||
|
|
||||||
class CausalConv1d(torch.nn.Conv1d):
|
class CausalConv1d(torch.nn.Conv1d):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
@@ -76,12 +55,339 @@ class CausalConv1d(torch.nn.Conv1d):
|
|||||||
padding_mode=padding_mode,
|
padding_mode=padding_mode,
|
||||||
device=device, dtype=dtype)
|
device=device, dtype=dtype)
|
||||||
assert stride == 1
|
assert stride == 1
|
||||||
self.causal_padding = (kernel_size - 1, 0)
|
self.causal_padding = kernel_size - 1
|
||||||
|
|
||||||
def forward(self, x: torch.Tensor):
|
def forward(self, x: torch.Tensor, cache: torch.Tensor = torch.zeros(0, 0, 0)) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
x = F.pad(x, self.causal_padding)
|
if cache.size(2) == 0:
|
||||||
|
x = F.pad(x, (self.causal_padding, 0), value=0.0)
|
||||||
|
else:
|
||||||
|
assert cache.size(2) == self.causal_padding
|
||||||
|
x = torch.concat([cache, x], dim=2)
|
||||||
|
cache = x[:, :, -self.causal_padding:]
|
||||||
x = super(CausalConv1d, self).forward(x)
|
x = super(CausalConv1d, self).forward(x)
|
||||||
return x
|
return x, cache
|
||||||
|
|
||||||
|
|
||||||
|
class CausalBlock1D(Block1D):
|
||||||
|
def __init__(self, dim: int, dim_out: int):
|
||||||
|
super(CausalBlock1D, self).__init__(dim, dim_out)
|
||||||
|
self.block = torch.nn.Sequential(
|
||||||
|
CausalConv1d(dim, dim_out, 3),
|
||||||
|
Transpose(1, 2),
|
||||||
|
nn.LayerNorm(dim_out),
|
||||||
|
Transpose(1, 2),
|
||||||
|
nn.Mish(),
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor, mask: torch.Tensor, cache: torch.Tensor = torch.zeros(0, 0, 0)) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
output, cache = self.block[0](x * mask, cache)
|
||||||
|
for i in range(1, len(self.block)):
|
||||||
|
output = self.block[i](output)
|
||||||
|
return output * mask, cache
|
||||||
|
|
||||||
|
|
||||||
|
class CausalResnetBlock1D(ResnetBlock1D):
|
||||||
|
def __init__(self, dim: int, dim_out: int, time_emb_dim: int, groups: int = 8):
|
||||||
|
super(CausalResnetBlock1D, self).__init__(dim, dim_out, time_emb_dim, groups)
|
||||||
|
self.block1 = CausalBlock1D(dim, dim_out)
|
||||||
|
self.block2 = CausalBlock1D(dim_out, dim_out)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor, mask: torch.Tensor, time_emb: torch.Tensor,
|
||||||
|
block1_cache: torch.Tensor = torch.zeros(0, 0, 0), block2_cache: torch.Tensor = torch.zeros(0, 0, 0)
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||||
|
h, block1_cache = self.block1(x, mask, block1_cache)
|
||||||
|
h += self.mlp(time_emb).unsqueeze(-1)
|
||||||
|
h, block2_cache = self.block2(h, mask, block2_cache)
|
||||||
|
output = h + self.res_conv(x * mask)
|
||||||
|
return output, block1_cache, block2_cache
|
||||||
|
|
||||||
|
|
||||||
|
class CausalAttnProcessor2_0(AttnProcessor2_0):
|
||||||
|
r"""
|
||||||
|
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super(CausalAttnProcessor2_0, self).__init__()
|
||||||
|
|
||||||
|
def __call__(
|
||||||
|
self,
|
||||||
|
attn: Attention,
|
||||||
|
hidden_states: torch.FloatTensor,
|
||||||
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||||||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||||||
|
temb: Optional[torch.FloatTensor] = None,
|
||||||
|
cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
||||||
|
*args,
|
||||||
|
**kwargs,
|
||||||
|
) -> Tuple[torch.FloatTensor, torch.Tensor]:
|
||||||
|
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
||||||
|
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. \
|
||||||
|
`scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
||||||
|
deprecate("scale", "1.0.0", deprecation_message)
|
||||||
|
|
||||||
|
residual = hidden_states
|
||||||
|
if attn.spatial_norm is not None:
|
||||||
|
hidden_states = attn.spatial_norm(hidden_states, temb)
|
||||||
|
|
||||||
|
input_ndim = hidden_states.ndim
|
||||||
|
|
||||||
|
if input_ndim == 4:
|
||||||
|
batch_size, channel, height, width = hidden_states.shape
|
||||||
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
||||||
|
|
||||||
|
batch_size, sequence_length, _ = (
|
||||||
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
||||||
|
)
|
||||||
|
|
||||||
|
if attention_mask is not None:
|
||||||
|
# NOTE do not use attn.prepare_attention_mask as we have already provided the correct attention_mask
|
||||||
|
# scaled_dot_product_attention expects attention_mask shape to be
|
||||||
|
# (batch, heads, source_length, target_length)
|
||||||
|
attention_mask = attention_mask.unsqueeze(dim=1).repeat(1, attn.heads, 1, 1)
|
||||||
|
|
||||||
|
if attn.group_norm is not None:
|
||||||
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
||||||
|
|
||||||
|
query = attn.to_q(hidden_states)
|
||||||
|
|
||||||
|
if encoder_hidden_states is None:
|
||||||
|
encoder_hidden_states = hidden_states
|
||||||
|
elif attn.norm_cross:
|
||||||
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
||||||
|
|
||||||
|
key_cache = attn.to_k(encoder_hidden_states)
|
||||||
|
value_cache = attn.to_v(encoder_hidden_states)
|
||||||
|
# NOTE here we judge cache.size(0) instead of cache.size(1), because init_cache has size (2, 0, 512, 2)
|
||||||
|
if cache.size(0) != 0:
|
||||||
|
key = torch.concat([cache[:, :, :, 0], key_cache], dim=1)
|
||||||
|
value = torch.concat([cache[:, :, :, 1], value_cache], dim=1)
|
||||||
|
else:
|
||||||
|
key, value = key_cache, value_cache
|
||||||
|
cache = torch.stack([key_cache, value_cache], dim=3)
|
||||||
|
|
||||||
|
inner_dim = key.shape[-1]
|
||||||
|
head_dim = inner_dim // attn.heads
|
||||||
|
|
||||||
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||||
|
|
||||||
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||||
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||||
|
|
||||||
|
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
||||||
|
# TODO: add support for attn.scale when we move to Torch 2.1
|
||||||
|
hidden_states = F.scaled_dot_product_attention(
|
||||||
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
||||||
|
)
|
||||||
|
|
||||||
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||||
|
hidden_states = hidden_states.to(query.dtype)
|
||||||
|
|
||||||
|
# linear proj
|
||||||
|
hidden_states = attn.to_out[0](hidden_states)
|
||||||
|
# dropout
|
||||||
|
hidden_states = attn.to_out[1](hidden_states)
|
||||||
|
|
||||||
|
if input_ndim == 4:
|
||||||
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
||||||
|
|
||||||
|
if attn.residual_connection:
|
||||||
|
hidden_states = hidden_states + residual
|
||||||
|
|
||||||
|
hidden_states = hidden_states / attn.rescale_output_factor
|
||||||
|
|
||||||
|
return hidden_states, cache
|
||||||
|
|
||||||
|
|
||||||
|
@maybe_allow_in_graph
|
||||||
|
class CausalAttention(Attention):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
query_dim: int,
|
||||||
|
cross_attention_dim: Optional[int] = None,
|
||||||
|
heads: int = 8,
|
||||||
|
dim_head: int = 64,
|
||||||
|
dropout: float = 0.0,
|
||||||
|
bias: bool = False,
|
||||||
|
upcast_attention: bool = False,
|
||||||
|
upcast_softmax: bool = False,
|
||||||
|
cross_attention_norm: Optional[str] = None,
|
||||||
|
cross_attention_norm_num_groups: int = 32,
|
||||||
|
qk_norm: Optional[str] = None,
|
||||||
|
added_kv_proj_dim: Optional[int] = None,
|
||||||
|
norm_num_groups: Optional[int] = None,
|
||||||
|
spatial_norm_dim: Optional[int] = None,
|
||||||
|
out_bias: bool = True,
|
||||||
|
scale_qk: bool = True,
|
||||||
|
only_cross_attention: bool = False,
|
||||||
|
eps: float = 1e-5,
|
||||||
|
rescale_output_factor: float = 1.0,
|
||||||
|
residual_connection: bool = False,
|
||||||
|
_from_deprecated_attn_block: bool = False,
|
||||||
|
processor: Optional["AttnProcessor2_0"] = None,
|
||||||
|
out_dim: int = None,
|
||||||
|
):
|
||||||
|
super(CausalAttention, self).__init__(query_dim, cross_attention_dim, heads, dim_head, dropout, bias, upcast_attention, upcast_softmax,
|
||||||
|
cross_attention_norm, cross_attention_norm_num_groups, qk_norm, added_kv_proj_dim, norm_num_groups,
|
||||||
|
spatial_norm_dim, out_bias, scale_qk, only_cross_attention, eps, rescale_output_factor, residual_connection,
|
||||||
|
_from_deprecated_attn_block, processor, out_dim)
|
||||||
|
processor = CausalAttnProcessor2_0()
|
||||||
|
self.set_processor(processor)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
hidden_states: torch.FloatTensor,
|
||||||
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||||||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||||||
|
cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
||||||
|
**cross_attention_kwargs,
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
r"""
|
||||||
|
The forward method of the `Attention` class.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
hidden_states (`torch.Tensor`):
|
||||||
|
The hidden states of the query.
|
||||||
|
encoder_hidden_states (`torch.Tensor`, *optional*):
|
||||||
|
The hidden states of the encoder.
|
||||||
|
attention_mask (`torch.Tensor`, *optional*):
|
||||||
|
The attention mask to use. If `None`, no mask is applied.
|
||||||
|
**cross_attention_kwargs:
|
||||||
|
Additional keyword arguments to pass along to the cross attention.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
`torch.Tensor`: The output of the attention layer.
|
||||||
|
"""
|
||||||
|
# The `Attention` class can call different attention processors / attention functions
|
||||||
|
# here we simply pass along all tensors to the selected processor class
|
||||||
|
# For standard processors that are defined here, `**cross_attention_kwargs` is empty
|
||||||
|
|
||||||
|
attn_parameters = set(inspect.signature(self.processor.__call__).parameters.keys())
|
||||||
|
unused_kwargs = [k for k, _ in cross_attention_kwargs.items() if k not in attn_parameters]
|
||||||
|
if len(unused_kwargs) > 0:
|
||||||
|
logger.warning(
|
||||||
|
f"cross_attention_kwargs {unused_kwargs} are not expected by {self.processor.__class__.__name__} and will be ignored."
|
||||||
|
)
|
||||||
|
cross_attention_kwargs = {k: w for k, w in cross_attention_kwargs.items() if k in attn_parameters}
|
||||||
|
|
||||||
|
return self.processor(
|
||||||
|
self,
|
||||||
|
hidden_states,
|
||||||
|
encoder_hidden_states=encoder_hidden_states,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
cache=cache,
|
||||||
|
**cross_attention_kwargs,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@maybe_allow_in_graph
|
||||||
|
class CausalBasicTransformerBlock(BasicTransformerBlock):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
dim: int,
|
||||||
|
num_attention_heads: int,
|
||||||
|
attention_head_dim: int,
|
||||||
|
dropout=0.0,
|
||||||
|
cross_attention_dim: Optional[int] = None,
|
||||||
|
activation_fn: str = "geglu",
|
||||||
|
num_embeds_ada_norm: Optional[int] = None,
|
||||||
|
attention_bias: bool = False,
|
||||||
|
only_cross_attention: bool = False,
|
||||||
|
double_self_attention: bool = False,
|
||||||
|
upcast_attention: bool = False,
|
||||||
|
norm_elementwise_affine: bool = True,
|
||||||
|
norm_type: str = "layer_norm",
|
||||||
|
final_dropout: bool = False,
|
||||||
|
):
|
||||||
|
super(CausalBasicTransformerBlock, self).__init__(dim, num_attention_heads, attention_head_dim, dropout,
|
||||||
|
cross_attention_dim, activation_fn, num_embeds_ada_norm,
|
||||||
|
attention_bias, only_cross_attention, double_self_attention,
|
||||||
|
upcast_attention, norm_elementwise_affine, norm_type, final_dropout)
|
||||||
|
self.attn1 = CausalAttention(
|
||||||
|
query_dim=dim,
|
||||||
|
heads=num_attention_heads,
|
||||||
|
dim_head=attention_head_dim,
|
||||||
|
dropout=dropout,
|
||||||
|
bias=attention_bias,
|
||||||
|
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
||||||
|
upcast_attention=upcast_attention,
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
hidden_states: torch.FloatTensor,
|
||||||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||||||
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||||||
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||||
|
timestep: Optional[torch.LongTensor] = None,
|
||||||
|
cross_attention_kwargs: Dict[str, Any] = None,
|
||||||
|
class_labels: Optional[torch.LongTensor] = None,
|
||||||
|
cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
# Notice that normalization is always applied before the real computation in the following blocks.
|
||||||
|
# 1. Self-Attention
|
||||||
|
if self.use_ada_layer_norm:
|
||||||
|
norm_hidden_states = self.norm1(hidden_states, timestep)
|
||||||
|
elif self.use_ada_layer_norm_zero:
|
||||||
|
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
||||||
|
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
norm_hidden_states = self.norm1(hidden_states)
|
||||||
|
|
||||||
|
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
||||||
|
|
||||||
|
attn_output, cache = self.attn1(
|
||||||
|
norm_hidden_states,
|
||||||
|
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
||||||
|
attention_mask=encoder_attention_mask if self.only_cross_attention else attention_mask,
|
||||||
|
cache=cache,
|
||||||
|
**cross_attention_kwargs,
|
||||||
|
)
|
||||||
|
if self.use_ada_layer_norm_zero:
|
||||||
|
attn_output = gate_msa.unsqueeze(1) * attn_output
|
||||||
|
hidden_states = attn_output + hidden_states
|
||||||
|
|
||||||
|
# 2. Cross-Attention
|
||||||
|
if self.attn2 is not None:
|
||||||
|
norm_hidden_states = (
|
||||||
|
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
||||||
|
)
|
||||||
|
|
||||||
|
attn_output = self.attn2(
|
||||||
|
norm_hidden_states,
|
||||||
|
encoder_hidden_states=encoder_hidden_states,
|
||||||
|
attention_mask=encoder_attention_mask,
|
||||||
|
**cross_attention_kwargs,
|
||||||
|
)
|
||||||
|
hidden_states = attn_output + hidden_states
|
||||||
|
|
||||||
|
# 3. Feed-forward
|
||||||
|
norm_hidden_states = self.norm3(hidden_states)
|
||||||
|
|
||||||
|
if self.use_ada_layer_norm_zero:
|
||||||
|
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
||||||
|
|
||||||
|
if self._chunk_size is not None:
|
||||||
|
# "feed_forward_chunk_size" can be used to save memory
|
||||||
|
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
|
||||||
|
raise ValueError(f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: \
|
||||||
|
{self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.")
|
||||||
|
|
||||||
|
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
|
||||||
|
ff_output = torch.cat(
|
||||||
|
[self.ff(hid_slice) for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)],
|
||||||
|
dim=self._chunk_dim,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
ff_output = self.ff(norm_hidden_states)
|
||||||
|
|
||||||
|
if self.use_ada_layer_norm_zero:
|
||||||
|
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
||||||
|
|
||||||
|
hidden_states = ff_output + hidden_states
|
||||||
|
|
||||||
|
return hidden_states, cache
|
||||||
|
|
||||||
|
|
||||||
class ConditionalDecoder(nn.Module):
|
class ConditionalDecoder(nn.Module):
|
||||||
@@ -89,7 +395,6 @@ class ConditionalDecoder(nn.Module):
|
|||||||
self,
|
self,
|
||||||
in_channels,
|
in_channels,
|
||||||
out_channels,
|
out_channels,
|
||||||
causal=False,
|
|
||||||
channels=(256, 256),
|
channels=(256, 256),
|
||||||
dropout=0.05,
|
dropout=0.05,
|
||||||
attention_head_dim=64,
|
attention_head_dim=64,
|
||||||
@@ -106,7 +411,7 @@ class ConditionalDecoder(nn.Module):
|
|||||||
channels = tuple(channels)
|
channels = tuple(channels)
|
||||||
self.in_channels = in_channels
|
self.in_channels = in_channels
|
||||||
self.out_channels = out_channels
|
self.out_channels = out_channels
|
||||||
self.causal = causal
|
|
||||||
self.time_embeddings = SinusoidalPosEmb(in_channels)
|
self.time_embeddings = SinusoidalPosEmb(in_channels)
|
||||||
time_embed_dim = channels[0] * 4
|
time_embed_dim = channels[0] * 4
|
||||||
self.time_mlp = TimestepEmbedding(
|
self.time_mlp = TimestepEmbedding(
|
||||||
@@ -123,8 +428,7 @@ class ConditionalDecoder(nn.Module):
|
|||||||
input_channel = output_channel
|
input_channel = output_channel
|
||||||
output_channel = channels[i]
|
output_channel = channels[i]
|
||||||
is_last = i == len(channels) - 1
|
is_last = i == len(channels) - 1
|
||||||
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else \
|
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
||||||
ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
|
||||||
transformer_blocks = nn.ModuleList(
|
transformer_blocks = nn.ModuleList(
|
||||||
[
|
[
|
||||||
BasicTransformerBlock(
|
BasicTransformerBlock(
|
||||||
@@ -138,16 +442,14 @@ class ConditionalDecoder(nn.Module):
|
|||||||
]
|
]
|
||||||
)
|
)
|
||||||
downsample = (
|
downsample = (
|
||||||
Downsample1D(output_channel) if not is_last else
|
Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
||||||
CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
|
||||||
)
|
)
|
||||||
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
|
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
|
||||||
|
|
||||||
for _ in range(num_mid_blocks):
|
for _ in range(num_mid_blocks):
|
||||||
input_channel = channels[-1]
|
input_channel = channels[-1]
|
||||||
out_channels = channels[-1]
|
out_channels = channels[-1]
|
||||||
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else \
|
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
||||||
ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
|
||||||
|
|
||||||
transformer_blocks = nn.ModuleList(
|
transformer_blocks = nn.ModuleList(
|
||||||
[
|
[
|
||||||
@@ -169,11 +471,7 @@ class ConditionalDecoder(nn.Module):
|
|||||||
input_channel = channels[i] * 2
|
input_channel = channels[i] * 2
|
||||||
output_channel = channels[i + 1]
|
output_channel = channels[i + 1]
|
||||||
is_last = i == len(channels) - 2
|
is_last = i == len(channels) - 2
|
||||||
resnet = CausalResnetBlock1D(
|
resnet = ResnetBlock1D(
|
||||||
dim=input_channel,
|
|
||||||
dim_out=output_channel,
|
|
||||||
time_emb_dim=time_embed_dim,
|
|
||||||
) if self.causal else ResnetBlock1D(
|
|
||||||
dim=input_channel,
|
dim=input_channel,
|
||||||
dim_out=output_channel,
|
dim_out=output_channel,
|
||||||
time_emb_dim=time_embed_dim,
|
time_emb_dim=time_embed_dim,
|
||||||
@@ -193,10 +491,10 @@ class ConditionalDecoder(nn.Module):
|
|||||||
upsample = (
|
upsample = (
|
||||||
Upsample1D(output_channel, use_conv_transpose=True)
|
Upsample1D(output_channel, use_conv_transpose=True)
|
||||||
if not is_last
|
if not is_last
|
||||||
else CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
||||||
)
|
)
|
||||||
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
|
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
|
||||||
self.final_block = CausalBlock1D(channels[-1], channels[-1]) if self.causal else Block1D(channels[-1], channels[-1])
|
self.final_block = Block1D(channels[-1], channels[-1])
|
||||||
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
|
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
|
||||||
self.initialize_weights()
|
self.initialize_weights()
|
||||||
|
|
||||||
@@ -214,7 +512,7 @@ class ConditionalDecoder(nn.Module):
|
|||||||
if m.bias is not None:
|
if m.bias is not None:
|
||||||
nn.init.constant_(m.bias, 0)
|
nn.init.constant_(m.bias, 0)
|
||||||
|
|
||||||
def forward(self, x, mask, mu, t, spks=None, cond=None):
|
def forward(self, x, mask, mu, t, spks=None, cond=None, streaming=False):
|
||||||
"""Forward pass of the UNet1DConditional model.
|
"""Forward pass of the UNet1DConditional model.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
@@ -249,9 +547,8 @@ class ConditionalDecoder(nn.Module):
|
|||||||
mask_down = masks[-1]
|
mask_down = masks[-1]
|
||||||
x = resnet(x, mask_down, t)
|
x = resnet(x, mask_down, t)
|
||||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||||
# attn_mask = torch.matmul(mask_down.transpose(1, 2).contiguous(), mask_down)
|
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
|
||||||
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, self.static_chunk_size, -1)
|
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
||||||
attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
|
|
||||||
for transformer_block in transformer_blocks:
|
for transformer_block in transformer_blocks:
|
||||||
x = transformer_block(
|
x = transformer_block(
|
||||||
hidden_states=x,
|
hidden_states=x,
|
||||||
@@ -268,9 +565,8 @@ class ConditionalDecoder(nn.Module):
|
|||||||
for resnet, transformer_blocks in self.mid_blocks:
|
for resnet, transformer_blocks in self.mid_blocks:
|
||||||
x = resnet(x, mask_mid, t)
|
x = resnet(x, mask_mid, t)
|
||||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||||
# attn_mask = torch.matmul(mask_mid.transpose(1, 2).contiguous(), mask_mid)
|
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
|
||||||
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, self.static_chunk_size, -1)
|
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
||||||
attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
|
|
||||||
for transformer_block in transformer_blocks:
|
for transformer_block in transformer_blocks:
|
||||||
x = transformer_block(
|
x = transformer_block(
|
||||||
hidden_states=x,
|
hidden_states=x,
|
||||||
@@ -285,9 +581,8 @@ class ConditionalDecoder(nn.Module):
|
|||||||
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
|
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
|
||||||
x = resnet(x, mask_up, t)
|
x = resnet(x, mask_up, t)
|
||||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||||
# attn_mask = torch.matmul(mask_up.transpose(1, 2).contiguous(), mask_up)
|
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
|
||||||
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, self.static_chunk_size, -1)
|
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
||||||
attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
|
|
||||||
for transformer_block in transformer_blocks:
|
for transformer_block in transformer_blocks:
|
||||||
x = transformer_block(
|
x = transformer_block(
|
||||||
hidden_states=x,
|
hidden_states=x,
|
||||||
@@ -299,3 +594,309 @@ class ConditionalDecoder(nn.Module):
|
|||||||
x = self.final_block(x, mask_up)
|
x = self.final_block(x, mask_up)
|
||||||
output = self.final_proj(x * mask_up)
|
output = self.final_proj(x * mask_up)
|
||||||
return output * mask
|
return output * mask
|
||||||
|
|
||||||
|
|
||||||
|
class CausalConditionalDecoder(ConditionalDecoder):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
in_channels,
|
||||||
|
out_channels,
|
||||||
|
channels=(256, 256),
|
||||||
|
dropout=0.05,
|
||||||
|
attention_head_dim=64,
|
||||||
|
n_blocks=1,
|
||||||
|
num_mid_blocks=2,
|
||||||
|
num_heads=4,
|
||||||
|
act_fn="snake",
|
||||||
|
static_chunk_size=50,
|
||||||
|
num_decoding_left_chunks=2,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
This decoder requires an input with the same shape of the target. So, if your text content
|
||||||
|
is shorter or longer than the outputs, please re-sampling it before feeding to the decoder.
|
||||||
|
"""
|
||||||
|
torch.nn.Module.__init__(self)
|
||||||
|
channels = tuple(channels)
|
||||||
|
self.in_channels = in_channels
|
||||||
|
self.out_channels = out_channels
|
||||||
|
self.time_embeddings = SinusoidalPosEmb(in_channels)
|
||||||
|
time_embed_dim = channels[0] * 4
|
||||||
|
self.time_mlp = TimestepEmbedding(
|
||||||
|
in_channels=in_channels,
|
||||||
|
time_embed_dim=time_embed_dim,
|
||||||
|
act_fn="silu",
|
||||||
|
)
|
||||||
|
self.static_chunk_size = static_chunk_size
|
||||||
|
self.num_decoding_left_chunks = num_decoding_left_chunks
|
||||||
|
self.down_blocks = nn.ModuleList([])
|
||||||
|
self.mid_blocks = nn.ModuleList([])
|
||||||
|
self.up_blocks = nn.ModuleList([])
|
||||||
|
|
||||||
|
output_channel = in_channels
|
||||||
|
for i in range(len(channels)): # pylint: disable=consider-using-enumerate
|
||||||
|
input_channel = output_channel
|
||||||
|
output_channel = channels[i]
|
||||||
|
is_last = i == len(channels) - 1
|
||||||
|
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
||||||
|
transformer_blocks = nn.ModuleList(
|
||||||
|
[
|
||||||
|
CausalBasicTransformerBlock(
|
||||||
|
dim=output_channel,
|
||||||
|
num_attention_heads=num_heads,
|
||||||
|
attention_head_dim=attention_head_dim,
|
||||||
|
dropout=dropout,
|
||||||
|
activation_fn=act_fn,
|
||||||
|
)
|
||||||
|
for _ in range(n_blocks)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
downsample = (
|
||||||
|
Downsample1D(output_channel) if not is_last else CausalConv1d(output_channel, output_channel, 3)
|
||||||
|
)
|
||||||
|
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
|
||||||
|
|
||||||
|
for _ in range(num_mid_blocks):
|
||||||
|
input_channel = channels[-1]
|
||||||
|
out_channels = channels[-1]
|
||||||
|
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
||||||
|
|
||||||
|
transformer_blocks = nn.ModuleList(
|
||||||
|
[
|
||||||
|
CausalBasicTransformerBlock(
|
||||||
|
dim=output_channel,
|
||||||
|
num_attention_heads=num_heads,
|
||||||
|
attention_head_dim=attention_head_dim,
|
||||||
|
dropout=dropout,
|
||||||
|
activation_fn=act_fn,
|
||||||
|
)
|
||||||
|
for _ in range(n_blocks)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
|
||||||
|
|
||||||
|
channels = channels[::-1] + (channels[0],)
|
||||||
|
for i in range(len(channels) - 1):
|
||||||
|
input_channel = channels[i] * 2
|
||||||
|
output_channel = channels[i + 1]
|
||||||
|
is_last = i == len(channels) - 2
|
||||||
|
resnet = CausalResnetBlock1D(
|
||||||
|
dim=input_channel,
|
||||||
|
dim_out=output_channel,
|
||||||
|
time_emb_dim=time_embed_dim,
|
||||||
|
)
|
||||||
|
transformer_blocks = nn.ModuleList(
|
||||||
|
[
|
||||||
|
CausalBasicTransformerBlock(
|
||||||
|
dim=output_channel,
|
||||||
|
num_attention_heads=num_heads,
|
||||||
|
attention_head_dim=attention_head_dim,
|
||||||
|
dropout=dropout,
|
||||||
|
activation_fn=act_fn,
|
||||||
|
)
|
||||||
|
for _ in range(n_blocks)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
upsample = (
|
||||||
|
Upsample1D(output_channel, use_conv_transpose=True)
|
||||||
|
if not is_last
|
||||||
|
else CausalConv1d(output_channel, output_channel, 3)
|
||||||
|
)
|
||||||
|
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
|
||||||
|
self.final_block = CausalBlock1D(channels[-1], channels[-1])
|
||||||
|
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
|
||||||
|
self.initialize_weights()
|
||||||
|
|
||||||
|
def forward(self, x, mask, mu, t, spks=None, cond=None, streaming=False):
|
||||||
|
"""Forward pass of the UNet1DConditional model.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x (torch.Tensor): shape (batch_size, in_channels, time)
|
||||||
|
mask (_type_): shape (batch_size, 1, time)
|
||||||
|
t (_type_): shape (batch_size)
|
||||||
|
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
|
||||||
|
cond (_type_, optional): placeholder for future use. Defaults to None.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: _description_
|
||||||
|
ValueError: _description_
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
_type_: _description_
|
||||||
|
"""
|
||||||
|
|
||||||
|
t = self.time_embeddings(t).to(t.dtype)
|
||||||
|
t = self.time_mlp(t)
|
||||||
|
|
||||||
|
x = pack([x, mu], "b * t")[0]
|
||||||
|
|
||||||
|
if spks is not None:
|
||||||
|
spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
|
||||||
|
x = pack([x, spks], "b * t")[0]
|
||||||
|
if cond is not None:
|
||||||
|
x = pack([x, cond], "b * t")[0]
|
||||||
|
|
||||||
|
hiddens = []
|
||||||
|
masks = [mask]
|
||||||
|
for resnet, transformer_blocks, downsample in self.down_blocks:
|
||||||
|
mask_down = masks[-1]
|
||||||
|
x, _, _ = resnet(x, mask_down, t)
|
||||||
|
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||||
|
if streaming is True:
|
||||||
|
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, self.static_chunk_size, self.num_decoding_left_chunks)
|
||||||
|
else:
|
||||||
|
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
|
||||||
|
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
||||||
|
for transformer_block in transformer_blocks:
|
||||||
|
x, _ = transformer_block(
|
||||||
|
hidden_states=x,
|
||||||
|
attention_mask=attn_mask,
|
||||||
|
timestep=t,
|
||||||
|
)
|
||||||
|
x = rearrange(x, "b t c -> b c t").contiguous()
|
||||||
|
hiddens.append(x) # Save hidden states for skip connections
|
||||||
|
x, _ = downsample(x * mask_down)
|
||||||
|
masks.append(mask_down[:, :, ::2])
|
||||||
|
masks = masks[:-1]
|
||||||
|
mask_mid = masks[-1]
|
||||||
|
|
||||||
|
for resnet, transformer_blocks in self.mid_blocks:
|
||||||
|
x, _, _ = resnet(x, mask_mid, t)
|
||||||
|
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||||
|
if streaming is True:
|
||||||
|
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, self.static_chunk_size, self.num_decoding_left_chunks)
|
||||||
|
else:
|
||||||
|
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
|
||||||
|
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
||||||
|
for transformer_block in transformer_blocks:
|
||||||
|
x, _ = transformer_block(
|
||||||
|
hidden_states=x,
|
||||||
|
attention_mask=attn_mask,
|
||||||
|
timestep=t,
|
||||||
|
)
|
||||||
|
x = rearrange(x, "b t c -> b c t").contiguous()
|
||||||
|
|
||||||
|
for resnet, transformer_blocks, upsample in self.up_blocks:
|
||||||
|
mask_up = masks.pop()
|
||||||
|
skip = hiddens.pop()
|
||||||
|
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
|
||||||
|
x, _, _ = resnet(x, mask_up, t)
|
||||||
|
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||||
|
if streaming is True:
|
||||||
|
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, self.static_chunk_size, self.num_decoding_left_chunks)
|
||||||
|
else:
|
||||||
|
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
|
||||||
|
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
||||||
|
for transformer_block in transformer_blocks:
|
||||||
|
x, _ = transformer_block(
|
||||||
|
hidden_states=x,
|
||||||
|
attention_mask=attn_mask,
|
||||||
|
timestep=t,
|
||||||
|
)
|
||||||
|
x = rearrange(x, "b t c -> b c t").contiguous()
|
||||||
|
x, _ = upsample(x * mask_up)
|
||||||
|
x, _ = self.final_block(x, mask_up)
|
||||||
|
output = self.final_proj(x * mask_up)
|
||||||
|
return output * mask
|
||||||
|
|
||||||
|
def forward_chunk(self, x, mask, mu, t, spks=None, cond=None,
|
||||||
|
down_blocks_conv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
||||||
|
down_blocks_kv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0, 0, 0),
|
||||||
|
mid_blocks_conv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
||||||
|
mid_blocks_kv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0, 0, 0),
|
||||||
|
up_blocks_conv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
||||||
|
up_blocks_kv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0, 0, 0),
|
||||||
|
final_blocks_conv_cache: torch.Tensor = torch.zeros(0, 0, 0)
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||||
|
"""Forward pass of the UNet1DConditional model.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x (torch.Tensor): shape (batch_size, in_channels, time)
|
||||||
|
mask (_type_): shape (batch_size, 1, time)
|
||||||
|
t (_type_): shape (batch_size)
|
||||||
|
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
|
||||||
|
cond (_type_, optional): placeholder for future use. Defaults to None.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: _description_
|
||||||
|
ValueError: _description_
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
_type_: _description_
|
||||||
|
"""
|
||||||
|
|
||||||
|
t = self.time_embeddings(t).to(t.dtype)
|
||||||
|
t = self.time_mlp(t)
|
||||||
|
|
||||||
|
x = pack([x, mu], "b * t")[0]
|
||||||
|
|
||||||
|
if spks is not None:
|
||||||
|
spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
|
||||||
|
x = pack([x, spks], "b * t")[0]
|
||||||
|
if cond is not None:
|
||||||
|
x = pack([x, cond], "b * t")[0]
|
||||||
|
|
||||||
|
hiddens = []
|
||||||
|
masks = [mask]
|
||||||
|
|
||||||
|
down_blocks_kv_cache_new = torch.zeros(1, 4, 2, x.size(2), 512, 2).to(x.device)
|
||||||
|
mid_blocks_kv_cache_new = torch.zeros(12, 4, 2, x.size(2), 512, 2).to(x.device)
|
||||||
|
up_blocks_kv_cache_new = torch.zeros(1, 4, 2, x.size(2), 512, 2).to(x.device)
|
||||||
|
for index, (resnet, transformer_blocks, downsample) in enumerate(self.down_blocks):
|
||||||
|
mask_down = masks[-1]
|
||||||
|
x, down_blocks_conv_cache[index][:, :320], down_blocks_conv_cache[index][:, 320: 576] = \
|
||||||
|
resnet(x, mask_down, t, down_blocks_conv_cache[index][:, :320], down_blocks_conv_cache[index][:, 320: 576])
|
||||||
|
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||||
|
attn_mask = torch.ones(x.size(0), x.size(1), x.size(1) + down_blocks_kv_cache.size(3), device=x.device).bool()
|
||||||
|
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
||||||
|
for i, transformer_block in enumerate(transformer_blocks):
|
||||||
|
x, down_blocks_kv_cache_new[index, i] = transformer_block(
|
||||||
|
hidden_states=x,
|
||||||
|
attention_mask=attn_mask,
|
||||||
|
timestep=t,
|
||||||
|
cache=down_blocks_kv_cache[index, i],
|
||||||
|
)
|
||||||
|
x = rearrange(x, "b t c -> b c t").contiguous()
|
||||||
|
hiddens.append(x) # Save hidden states for skip connections
|
||||||
|
x, down_blocks_conv_cache[index][:, 576:] = downsample(x * mask_down, down_blocks_conv_cache[index][:, 576:])
|
||||||
|
masks.append(mask_down[:, :, ::2])
|
||||||
|
masks = masks[:-1]
|
||||||
|
mask_mid = masks[-1]
|
||||||
|
|
||||||
|
for index, (resnet, transformer_blocks) in enumerate(self.mid_blocks):
|
||||||
|
x, mid_blocks_conv_cache[index][:, :256], mid_blocks_conv_cache[index][:, 256:] = \
|
||||||
|
resnet(x, mask_mid, t, mid_blocks_conv_cache[index][:, :256], mid_blocks_conv_cache[index][:, 256:])
|
||||||
|
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||||
|
attn_mask = torch.ones(x.size(0), x.size(1), x.size(1) + mid_blocks_kv_cache.size(3), device=x.device).bool()
|
||||||
|
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
||||||
|
for i, transformer_block in enumerate(transformer_blocks):
|
||||||
|
x, mid_blocks_kv_cache_new[index, i] = transformer_block(
|
||||||
|
hidden_states=x,
|
||||||
|
attention_mask=attn_mask,
|
||||||
|
timestep=t,
|
||||||
|
cache=mid_blocks_kv_cache[index, i]
|
||||||
|
)
|
||||||
|
x = rearrange(x, "b t c -> b c t").contiguous()
|
||||||
|
|
||||||
|
for index, (resnet, transformer_blocks, upsample) in enumerate(self.up_blocks):
|
||||||
|
mask_up = masks.pop()
|
||||||
|
skip = hiddens.pop()
|
||||||
|
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
|
||||||
|
x, up_blocks_conv_cache[index][:, :512], up_blocks_conv_cache[index][:, 512: 768] = \
|
||||||
|
resnet(x, mask_up, t, up_blocks_conv_cache[index][:, :512], up_blocks_conv_cache[index][:, 512: 768])
|
||||||
|
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||||
|
attn_mask = torch.ones(x.size(0), x.size(1), x.size(1) + up_blocks_kv_cache.size(3), device=x.device).bool()
|
||||||
|
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
||||||
|
for i, transformer_block in enumerate(transformer_blocks):
|
||||||
|
x, up_blocks_kv_cache_new[index, i] = transformer_block(
|
||||||
|
hidden_states=x,
|
||||||
|
attention_mask=attn_mask,
|
||||||
|
timestep=t,
|
||||||
|
cache=up_blocks_kv_cache[index, i]
|
||||||
|
)
|
||||||
|
x = rearrange(x, "b t c -> b c t").contiguous()
|
||||||
|
x, up_blocks_conv_cache[index][:, 768:] = upsample(x * mask_up, up_blocks_conv_cache[index][:, 768:])
|
||||||
|
x, final_blocks_conv_cache = self.final_block(x, mask_up, final_blocks_conv_cache)
|
||||||
|
output = self.final_proj(x * mask_up)
|
||||||
|
return output * mask, down_blocks_conv_cache, down_blocks_kv_cache_new, mid_blocks_conv_cache, mid_blocks_kv_cache_new, \
|
||||||
|
up_blocks_conv_cache, up_blocks_kv_cache_new, final_blocks_conv_cache
|
||||||
|
|||||||
@@ -91,6 +91,7 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
|||||||
conds = conds.transpose(1, 2)
|
conds = conds.transpose(1, 2)
|
||||||
|
|
||||||
mask = (~make_pad_mask(feat_len)).to(h)
|
mask = (~make_pad_mask(feat_len)).to(h)
|
||||||
|
# NOTE this is unnecessary, feat/h already same shape
|
||||||
feat = F.interpolate(feat.unsqueeze(dim=1), size=h.shape[1:], mode="nearest").squeeze(dim=1)
|
feat = F.interpolate(feat.unsqueeze(dim=1), size=h.shape[1:], mode="nearest").squeeze(dim=1)
|
||||||
loss, _ = self.decoder.compute_loss(
|
loss, _ = self.decoder.compute_loss(
|
||||||
feat.transpose(1, 2).contiguous(),
|
feat.transpose(1, 2).contiguous(),
|
||||||
@@ -111,16 +112,12 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
|||||||
prompt_feat_len,
|
prompt_feat_len,
|
||||||
embedding,
|
embedding,
|
||||||
flow_cache):
|
flow_cache):
|
||||||
if self.fp16 is True:
|
|
||||||
prompt_feat = prompt_feat.half()
|
|
||||||
embedding = embedding.half()
|
|
||||||
|
|
||||||
assert token.shape[0] == 1
|
assert token.shape[0] == 1
|
||||||
# xvec projection
|
# xvec projection
|
||||||
embedding = F.normalize(embedding, dim=1)
|
embedding = F.normalize(embedding, dim=1)
|
||||||
embedding = self.spk_embed_affine_layer(embedding)
|
embedding = self.spk_embed_affine_layer(embedding)
|
||||||
|
|
||||||
# concat text and prompt_text
|
# concat speech token and prompt speech token
|
||||||
token_len1, token_len2 = prompt_token.shape[1], token.shape[1]
|
token_len1, token_len2 = prompt_token.shape[1], token.shape[1]
|
||||||
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
||||||
mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
|
mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
|
||||||
@@ -145,7 +142,7 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
|||||||
cond=conds,
|
cond=conds,
|
||||||
n_timesteps=10,
|
n_timesteps=10,
|
||||||
prompt_len=mel_len1,
|
prompt_len=mel_len1,
|
||||||
flow_cache=flow_cache
|
cache=flow_cache
|
||||||
)
|
)
|
||||||
feat = feat[:, :, mel_len1:]
|
feat = feat[:, :, mel_len1:]
|
||||||
assert feat.shape[2] == mel_len2
|
assert feat.shape[2] == mel_len2
|
||||||
@@ -190,6 +187,53 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
|
|||||||
self.token_mel_ratio = token_mel_ratio
|
self.token_mel_ratio = token_mel_ratio
|
||||||
self.pre_lookahead_len = pre_lookahead_len
|
self.pre_lookahead_len = pre_lookahead_len
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
batch: dict,
|
||||||
|
device: torch.device,
|
||||||
|
) -> Dict[str, Optional[torch.Tensor]]:
|
||||||
|
token = batch['speech_token'].to(device)
|
||||||
|
token_len = batch['speech_token_len'].to(device)
|
||||||
|
feat = batch['speech_feat'].to(device)
|
||||||
|
feat_len = batch['speech_feat_len'].to(device)
|
||||||
|
embedding = batch['embedding'].to(device)
|
||||||
|
|
||||||
|
# NOTE unified training, static_chunk_size > 0 or = 0
|
||||||
|
streaming = True if random.random() < 0.5 else False
|
||||||
|
|
||||||
|
# xvec projection
|
||||||
|
embedding = F.normalize(embedding, dim=1)
|
||||||
|
embedding = self.spk_embed_affine_layer(embedding)
|
||||||
|
|
||||||
|
# concat text and prompt_text
|
||||||
|
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device)
|
||||||
|
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
||||||
|
|
||||||
|
# text encode
|
||||||
|
h, h_lengths = self.encoder(token, token_len, streaming=streaming)
|
||||||
|
h = self.encoder_proj(h)
|
||||||
|
|
||||||
|
# get conditions
|
||||||
|
feat = F.interpolate(feat.unsqueeze(dim=1), size=h.shape[1:], mode="nearest").squeeze(dim=1)
|
||||||
|
conds = torch.zeros(feat.shape, device=token.device)
|
||||||
|
for i, j in enumerate(feat_len):
|
||||||
|
if random.random() < 0.5:
|
||||||
|
continue
|
||||||
|
index = random.randint(0, int(0.3 * j))
|
||||||
|
conds[i, :index] = feat[i, :index]
|
||||||
|
conds = conds.transpose(1, 2)
|
||||||
|
|
||||||
|
mask = (~make_pad_mask(h_lengths.sum(dim=-1).squeeze(dim=1))).to(h)
|
||||||
|
loss, _ = self.decoder.compute_loss(
|
||||||
|
feat.transpose(1, 2).contiguous(),
|
||||||
|
mask.unsqueeze(1),
|
||||||
|
h.transpose(1, 2).contiguous(),
|
||||||
|
embedding,
|
||||||
|
cond=conds,
|
||||||
|
streaming=streaming,
|
||||||
|
)
|
||||||
|
return {'loss': loss}
|
||||||
|
|
||||||
@torch.inference_mode()
|
@torch.inference_mode()
|
||||||
def inference(self,
|
def inference(self,
|
||||||
token,
|
token,
|
||||||
@@ -199,11 +243,8 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
|
|||||||
prompt_feat,
|
prompt_feat,
|
||||||
prompt_feat_len,
|
prompt_feat_len,
|
||||||
embedding,
|
embedding,
|
||||||
|
cache,
|
||||||
finalize):
|
finalize):
|
||||||
if self.fp16 is True:
|
|
||||||
prompt_feat = prompt_feat.half()
|
|
||||||
embedding = embedding.half()
|
|
||||||
|
|
||||||
assert token.shape[0] == 1
|
assert token.shape[0] == 1
|
||||||
# xvec projection
|
# xvec projection
|
||||||
embedding = F.normalize(embedding, dim=1)
|
embedding = F.normalize(embedding, dim=1)
|
||||||
@@ -215,9 +256,17 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
|
|||||||
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
||||||
|
|
||||||
# text encode
|
# text encode
|
||||||
h, h_lengths = self.encoder(token, token_len)
|
if finalize is True:
|
||||||
if finalize is False:
|
h, h_lengths, encoder_cache = self.encoder.forward_chunk(token, token_len, **cache['encoder_cache'])
|
||||||
h = h[:, :-self.pre_lookahead_len * self.token_mel_ratio]
|
else:
|
||||||
|
token, context = token[:, :-self.pre_lookahead_len], token[:, -self.pre_lookahead_len:]
|
||||||
|
h, h_lengths, encoder_cache = self.encoder.forward_chunk(token, token_len, context=context, **cache['encoder_cache'])
|
||||||
|
cache['encoder_cache']['offset'] = encoder_cache[0]
|
||||||
|
cache['encoder_cache']['pre_lookahead_layer_conv2_cache'] = encoder_cache[1]
|
||||||
|
cache['encoder_cache']['encoders_kv_cache'] = encoder_cache[2]
|
||||||
|
cache['encoder_cache']['upsample_offset'] = encoder_cache[3]
|
||||||
|
cache['encoder_cache']['upsample_conv_cache'] = encoder_cache[4]
|
||||||
|
cache['encoder_cache']['upsample_kv_cache'] = encoder_cache[5]
|
||||||
mel_len1, mel_len2 = prompt_feat.shape[1], h.shape[1] - prompt_feat.shape[1]
|
mel_len1, mel_len2 = prompt_feat.shape[1], h.shape[1] - prompt_feat.shape[1]
|
||||||
h = self.encoder_proj(h)
|
h = self.encoder_proj(h)
|
||||||
|
|
||||||
@@ -227,13 +276,14 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
|
|||||||
conds = conds.transpose(1, 2)
|
conds = conds.transpose(1, 2)
|
||||||
|
|
||||||
mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
|
mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
|
||||||
feat, _ = self.decoder(
|
feat, cache['decoder_cache'] = self.decoder(
|
||||||
mu=h.transpose(1, 2).contiguous(),
|
mu=h.transpose(1, 2).contiguous(),
|
||||||
mask=mask.unsqueeze(1),
|
mask=mask.unsqueeze(1),
|
||||||
spks=embedding,
|
spks=embedding,
|
||||||
cond=conds,
|
cond=conds,
|
||||||
n_timesteps=10
|
n_timesteps=10,
|
||||||
|
cache=cache['decoder_cache']
|
||||||
)
|
)
|
||||||
feat = feat[:, :, mel_len1:]
|
feat = feat[:, :, mel_len1:]
|
||||||
assert feat.shape[2] == mel_len2
|
assert feat.shape[2] == mel_len2
|
||||||
return feat.float(), None
|
return feat.float(), cache
|
||||||
|
|||||||
@@ -34,7 +34,7 @@ class ConditionalCFM(BASECFM):
|
|||||||
self.lock = threading.Lock()
|
self.lock = threading.Lock()
|
||||||
|
|
||||||
@torch.inference_mode()
|
@torch.inference_mode()
|
||||||
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, prompt_len=0, flow_cache=torch.zeros(1, 80, 0, 2)):
|
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, prompt_len=0, cache=torch.zeros(1, 80, 0, 2)):
|
||||||
"""Forward diffusion
|
"""Forward diffusion
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
@@ -54,19 +54,19 @@ class ConditionalCFM(BASECFM):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
z = torch.randn_like(mu).to(mu.device).to(mu.dtype) * temperature
|
z = torch.randn_like(mu).to(mu.device).to(mu.dtype) * temperature
|
||||||
cache_size = flow_cache.shape[2]
|
cache_size = cache.shape[2]
|
||||||
# fix prompt and overlap part mu and z
|
# fix prompt and overlap part mu and z
|
||||||
if cache_size != 0:
|
if cache_size != 0:
|
||||||
z[:, :, :cache_size] = flow_cache[:, :, :, 0]
|
z[:, :, :cache_size] = cache[:, :, :, 0]
|
||||||
mu[:, :, :cache_size] = flow_cache[:, :, :, 1]
|
mu[:, :, :cache_size] = cache[:, :, :, 1]
|
||||||
z_cache = torch.concat([z[:, :, :prompt_len], z[:, :, -34:]], dim=2)
|
z_cache = torch.concat([z[:, :, :prompt_len], z[:, :, -34:]], dim=2)
|
||||||
mu_cache = torch.concat([mu[:, :, :prompt_len], mu[:, :, -34:]], dim=2)
|
mu_cache = torch.concat([mu[:, :, :prompt_len], mu[:, :, -34:]], dim=2)
|
||||||
flow_cache = torch.stack([z_cache, mu_cache], dim=-1)
|
cache = torch.stack([z_cache, mu_cache], dim=-1)
|
||||||
|
|
||||||
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
|
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
|
||||||
if self.t_scheduler == 'cosine':
|
if self.t_scheduler == 'cosine':
|
||||||
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
||||||
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), flow_cache
|
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), cache
|
||||||
|
|
||||||
def solve_euler(self, x, t_span, mu, mask, spks, cond):
|
def solve_euler(self, x, t_span, mu, mask, spks, cond):
|
||||||
"""
|
"""
|
||||||
@@ -123,7 +123,7 @@ class ConditionalCFM(BASECFM):
|
|||||||
|
|
||||||
def forward_estimator(self, x, mask, mu, t, spks, cond):
|
def forward_estimator(self, x, mask, mu, t, spks, cond):
|
||||||
if isinstance(self.estimator, torch.nn.Module):
|
if isinstance(self.estimator, torch.nn.Module):
|
||||||
return self.estimator.forward(x, mask, mu, t, spks, cond)
|
return self.estimator(x, mask, mu, t, spks, cond)
|
||||||
else:
|
else:
|
||||||
with self.lock:
|
with self.lock:
|
||||||
self.estimator.set_input_shape('x', (2, 80, x.size(2)))
|
self.estimator.set_input_shape('x', (2, 80, x.size(2)))
|
||||||
@@ -133,16 +133,16 @@ class ConditionalCFM(BASECFM):
|
|||||||
self.estimator.set_input_shape('spks', (2, 80))
|
self.estimator.set_input_shape('spks', (2, 80))
|
||||||
self.estimator.set_input_shape('cond', (2, 80, x.size(2)))
|
self.estimator.set_input_shape('cond', (2, 80, x.size(2)))
|
||||||
# run trt engine
|
# run trt engine
|
||||||
self.estimator.execute_v2([x.contiguous().data_ptr(),
|
assert self.estimator.execute_v2([x.contiguous().data_ptr(),
|
||||||
mask.contiguous().data_ptr(),
|
mask.contiguous().data_ptr(),
|
||||||
mu.contiguous().data_ptr(),
|
mu.contiguous().data_ptr(),
|
||||||
t.contiguous().data_ptr(),
|
t.contiguous().data_ptr(),
|
||||||
spks.contiguous().data_ptr(),
|
spks.contiguous().data_ptr(),
|
||||||
cond.contiguous().data_ptr(),
|
cond.contiguous().data_ptr(),
|
||||||
x.data_ptr()])
|
x.data_ptr()]) is True
|
||||||
return x
|
return x
|
||||||
|
|
||||||
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
def compute_loss(self, x1, mask, mu, spks=None, cond=None, streaming=False):
|
||||||
"""Computes diffusion loss
|
"""Computes diffusion loss
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
@@ -179,7 +179,7 @@ class ConditionalCFM(BASECFM):
|
|||||||
spks = spks * cfg_mask.view(-1, 1)
|
spks = spks * cfg_mask.view(-1, 1)
|
||||||
cond = cond * cfg_mask.view(-1, 1, 1)
|
cond = cond * cfg_mask.view(-1, 1, 1)
|
||||||
|
|
||||||
pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond)
|
pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond, streaming=streaming)
|
||||||
loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1])
|
loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1])
|
||||||
return loss, y
|
return loss, y
|
||||||
|
|
||||||
@@ -190,7 +190,7 @@ class CausalConditionalCFM(ConditionalCFM):
|
|||||||
self.rand_noise = torch.randn([1, 80, 50 * 300])
|
self.rand_noise = torch.randn([1, 80, 50 * 300])
|
||||||
|
|
||||||
@torch.inference_mode()
|
@torch.inference_mode()
|
||||||
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, cache={}):
|
||||||
"""Forward diffusion
|
"""Forward diffusion
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
@@ -209,9 +209,136 @@ class CausalConditionalCFM(ConditionalCFM):
|
|||||||
shape: (batch_size, n_feats, mel_timesteps)
|
shape: (batch_size, n_feats, mel_timesteps)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
z = self.rand_noise[:, :, :mu.size(2)].to(mu.device).to(mu.dtype) * temperature
|
offset = cache.pop('offset')
|
||||||
|
z = self.rand_noise[:, :, :mu.size(2) + offset].to(mu.device).to(mu.dtype) * temperature
|
||||||
|
z = z[:, :, offset:]
|
||||||
|
offset += mu.size(2)
|
||||||
# fix prompt and overlap part mu and z
|
# fix prompt and overlap part mu and z
|
||||||
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
|
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
|
||||||
if self.t_scheduler == 'cosine':
|
if self.t_scheduler == 'cosine':
|
||||||
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
||||||
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), None
|
mel, cache = self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond, cache=cache)
|
||||||
|
cache['offset'] = offset
|
||||||
|
return mel, cache
|
||||||
|
|
||||||
|
def solve_euler(self, x, t_span, mu, mask, spks, cond, cache):
|
||||||
|
"""
|
||||||
|
Fixed euler solver for ODEs.
|
||||||
|
Args:
|
||||||
|
x (torch.Tensor): random noise
|
||||||
|
t_span (torch.Tensor): n_timesteps interpolated
|
||||||
|
shape: (n_timesteps + 1,)
|
||||||
|
mu (torch.Tensor): output of encoder
|
||||||
|
shape: (batch_size, n_feats, mel_timesteps)
|
||||||
|
mask (torch.Tensor): output_mask
|
||||||
|
shape: (batch_size, 1, mel_timesteps)
|
||||||
|
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
||||||
|
shape: (batch_size, spk_emb_dim)
|
||||||
|
cond: Not used but kept for future purposes
|
||||||
|
"""
|
||||||
|
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
||||||
|
t = t.unsqueeze(dim=0)
|
||||||
|
|
||||||
|
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
|
||||||
|
# Or in future might add like a return_all_steps flag
|
||||||
|
sol = []
|
||||||
|
|
||||||
|
# estimator cache for each step
|
||||||
|
down_blocks_kv_cache_new = torch.zeros(10, 1, 4, 2, x.size(2), 512, 2).to(x)
|
||||||
|
mid_blocks_kv_cache_new = torch.zeros(10, 12, 4, 2, x.size(2), 512, 2).to(x)
|
||||||
|
up_blocks_kv_cache_new = torch.zeros(10, 1, 4, 2, x.size(2), 512, 2).to(x)
|
||||||
|
|
||||||
|
# Do not use concat, it may cause memory format changed and trt infer with wrong results!
|
||||||
|
x_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
||||||
|
mask_in = torch.zeros([2, 1, x.size(2)], device=x.device, dtype=x.dtype)
|
||||||
|
mu_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
||||||
|
t_in = torch.zeros([2], device=x.device, dtype=x.dtype)
|
||||||
|
spks_in = torch.zeros([2, 80], device=x.device, dtype=x.dtype)
|
||||||
|
cond_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
||||||
|
for step in range(1, len(t_span)):
|
||||||
|
# Classifier-Free Guidance inference introduced in VoiceBox
|
||||||
|
x_in[:] = x
|
||||||
|
mask_in[:] = mask
|
||||||
|
mu_in[0] = mu
|
||||||
|
t_in[:] = t.unsqueeze(0)
|
||||||
|
spks_in[0] = spks
|
||||||
|
cond_in[0] = cond
|
||||||
|
cache_step = {k: v[step - 1] for k, v in cache.items()}
|
||||||
|
dphi_dt, cache_step = self.forward_estimator(
|
||||||
|
x_in, mask_in,
|
||||||
|
mu_in, t_in,
|
||||||
|
spks_in,
|
||||||
|
cond_in,
|
||||||
|
cache_step
|
||||||
|
)
|
||||||
|
cache['down_blocks_conv_cache'][step - 1] = cache_step[0]
|
||||||
|
down_blocks_kv_cache_new[step - 1] = cache_step[1]
|
||||||
|
cache['mid_blocks_conv_cache'][step - 1] = cache_step[2]
|
||||||
|
mid_blocks_kv_cache_new[step - 1] = cache_step[3]
|
||||||
|
cache['up_blocks_conv_cache'][step - 1] = cache_step[4]
|
||||||
|
up_blocks_kv_cache_new[step - 1] = cache_step[5]
|
||||||
|
cache['final_blocks_conv_cache'][step - 1] = cache_step[6]
|
||||||
|
dphi_dt, cfg_dphi_dt = torch.split(dphi_dt, [x.size(0), x.size(0)], dim=0)
|
||||||
|
dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt)
|
||||||
|
x = x + dt * dphi_dt
|
||||||
|
t = t + dt
|
||||||
|
sol.append(x)
|
||||||
|
if step < len(t_span) - 1:
|
||||||
|
dt = t_span[step + 1] - t
|
||||||
|
cache['down_blocks_kv_cache'] = torch.concat([cache['down_blocks_kv_cache'], down_blocks_kv_cache_new], dim=4)
|
||||||
|
cache['mid_blocks_kv_cache'] = torch.concat([cache['mid_blocks_kv_cache'], mid_blocks_kv_cache_new], dim=4)
|
||||||
|
cache['up_blocks_kv_cache'] = torch.concat([cache['up_blocks_kv_cache'], up_blocks_kv_cache_new], dim=4)
|
||||||
|
return sol[-1].float(), cache
|
||||||
|
|
||||||
|
def forward_estimator(self, x, mask, mu, t, spks, cond, cache):
|
||||||
|
if isinstance(self.estimator, torch.nn.Module):
|
||||||
|
x, cache1, cache2, cache3, cache4, cache5, cache6, cache7 = self.estimator.forward_chunk(x, mask, mu, t, spks, cond, **cache)
|
||||||
|
cache = (cache1, cache2, cache3, cache4, cache5, cache6, cache7)
|
||||||
|
else:
|
||||||
|
with self.lock:
|
||||||
|
self.estimator.set_input_shape('x', (2, 80, x.size(2)))
|
||||||
|
self.estimator.set_input_shape('mask', (2, 1, x.size(2)))
|
||||||
|
self.estimator.set_input_shape('mu', (2, 80, x.size(2)))
|
||||||
|
self.estimator.set_input_shape('t', (2,))
|
||||||
|
self.estimator.set_input_shape('spks', (2, 80))
|
||||||
|
self.estimator.set_input_shape('cond', (2, 80, x.size(2)))
|
||||||
|
self.estimator.set_input_shape('down_blocks_conv_cache', cache['down_blocks_conv_cache'].shape)
|
||||||
|
self.estimator.set_input_shape('down_blocks_kv_cache', cache['down_blocks_kv_cache'].shape)
|
||||||
|
self.estimator.set_input_shape('mid_blocks_conv_cache', cache['mid_blocks_conv_cache'].shape)
|
||||||
|
self.estimator.set_input_shape('mid_blocks_kv_cache', cache['mid_blocks_kv_cache'].shape)
|
||||||
|
self.estimator.set_input_shape('up_blocks_conv_cache', cache['up_blocks_conv_cache'].shape)
|
||||||
|
self.estimator.set_input_shape('up_blocks_kv_cache', cache['up_blocks_kv_cache'].shape)
|
||||||
|
self.estimator.set_input_shape('final_blocks_conv_cache', cache['final_blocks_conv_cache'].shape)
|
||||||
|
# run trt engine
|
||||||
|
down_blocks_kv_cache_out = torch.zeros(1, 4, 2, x.size(2), 512, 2).to(x)
|
||||||
|
mid_blocks_kv_cache_out = torch.zeros(12, 4, 2, x.size(2), 512, 2).to(x)
|
||||||
|
up_blocks_kv_cache_out = torch.zeros(1, 4, 2, x.size(2), 512, 2).to(x)
|
||||||
|
assert self.estimator.execute_v2([x.contiguous().data_ptr(),
|
||||||
|
mask.contiguous().data_ptr(),
|
||||||
|
mu.contiguous().data_ptr(),
|
||||||
|
t.contiguous().data_ptr(),
|
||||||
|
spks.contiguous().data_ptr(),
|
||||||
|
cond.contiguous().data_ptr(),
|
||||||
|
cache['down_blocks_conv_cache'].contiguous().data_ptr(),
|
||||||
|
cache['down_blocks_kv_cache'].contiguous().data_ptr(),
|
||||||
|
cache['mid_blocks_conv_cache'].contiguous().data_ptr(),
|
||||||
|
cache['mid_blocks_kv_cache'].contiguous().data_ptr(),
|
||||||
|
cache['up_blocks_conv_cache'].contiguous().data_ptr(),
|
||||||
|
cache['up_blocks_kv_cache'].contiguous().data_ptr(),
|
||||||
|
cache['final_blocks_conv_cache'].contiguous().data_ptr(),
|
||||||
|
x.data_ptr(),
|
||||||
|
cache['down_blocks_conv_cache'].data_ptr(),
|
||||||
|
down_blocks_kv_cache_out.data_ptr(),
|
||||||
|
cache['mid_blocks_conv_cache'].data_ptr(),
|
||||||
|
mid_blocks_kv_cache_out.data_ptr(),
|
||||||
|
cache['up_blocks_conv_cache'].data_ptr(),
|
||||||
|
up_blocks_kv_cache_out.data_ptr(),
|
||||||
|
cache['final_blocks_conv_cache'].data_ptr()]) is True
|
||||||
|
cache = (cache['down_blocks_conv_cache'],
|
||||||
|
down_blocks_kv_cache_out,
|
||||||
|
cache['mid_blocks_conv_cache'],
|
||||||
|
mid_blocks_kv_cache_out,
|
||||||
|
cache['up_blocks_conv_cache'],
|
||||||
|
up_blocks_kv_cache_out,
|
||||||
|
cache['final_blocks_conv_cache'])
|
||||||
|
return x, cache
|
||||||
|
|||||||
@@ -51,6 +51,7 @@ class InterpolateRegulator(nn.Module):
|
|||||||
|
|
||||||
def inference(self, x1, x2, mel_len1, mel_len2, input_frame_rate=50):
|
def inference(self, x1, x2, mel_len1, mel_len2, input_frame_rate=50):
|
||||||
# in inference mode, interploate prompt token and token(head/mid/tail) seprately, so we can get a clear separation point of mel
|
# in inference mode, interploate prompt token and token(head/mid/tail) seprately, so we can get a clear separation point of mel
|
||||||
|
# NOTE 20 corresponds to token_overlap_len in cosyvoice/cli/model.py
|
||||||
# x in (B, T, D)
|
# x in (B, T, D)
|
||||||
if x2.shape[1] > 40:
|
if x2.shape[1] > 40:
|
||||||
x2_head = F.interpolate(x2[:, :20].transpose(1, 2).contiguous(), size=int(20 / input_frame_rate * 22050 / 256), mode='linear')
|
x2_head = F.interpolate(x2[:, :20].transpose(1, 2).contiguous(), size=int(20 / input_frame_rate * 22050 / 256), mode='linear')
|
||||||
|
|||||||
@@ -1,10 +1,16 @@
|
|||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from torch.nn.utils.parametrizations import weight_norm
|
import torch.nn.functional as F
|
||||||
|
try:
|
||||||
|
from torch.nn.utils.parametrizations import weight_norm, spectral_norm
|
||||||
|
except ImportError:
|
||||||
|
from torch.nn.utils import weight_norm, spectral_norm
|
||||||
from typing import List, Optional, Tuple
|
from typing import List, Optional, Tuple
|
||||||
from einops import rearrange
|
from einops import rearrange
|
||||||
from torchaudio.transforms import Spectrogram
|
from torchaudio.transforms import Spectrogram
|
||||||
|
|
||||||
|
LRELU_SLOPE = 0.1
|
||||||
|
|
||||||
|
|
||||||
class MultipleDiscriminator(nn.Module):
|
class MultipleDiscriminator(nn.Module):
|
||||||
def __init__(
|
def __init__(
|
||||||
@@ -138,3 +144,87 @@ class DiscriminatorR(nn.Module):
|
|||||||
x += h
|
x += h
|
||||||
|
|
||||||
return x, fmap
|
return x, fmap
|
||||||
|
|
||||||
|
|
||||||
|
class MultiResSpecDiscriminator(torch.nn.Module):
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
fft_sizes=[1024, 2048, 512],
|
||||||
|
hop_sizes=[120, 240, 50],
|
||||||
|
win_lengths=[600, 1200, 240],
|
||||||
|
window="hann_window"):
|
||||||
|
|
||||||
|
super(MultiResSpecDiscriminator, self).__init__()
|
||||||
|
self.discriminators = nn.ModuleList([
|
||||||
|
SpecDiscriminator(fft_sizes[0], hop_sizes[0], win_lengths[0], window),
|
||||||
|
SpecDiscriminator(fft_sizes[1], hop_sizes[1], win_lengths[1], window),
|
||||||
|
SpecDiscriminator(fft_sizes[2], hop_sizes[2], win_lengths[2], window)])
|
||||||
|
|
||||||
|
def forward(self, y, y_hat):
|
||||||
|
y_d_rs = []
|
||||||
|
y_d_gs = []
|
||||||
|
fmap_rs = []
|
||||||
|
fmap_gs = []
|
||||||
|
for _, d in enumerate(self.discriminators):
|
||||||
|
y_d_r, fmap_r = d(y)
|
||||||
|
y_d_g, fmap_g = d(y_hat)
|
||||||
|
y_d_rs.append(y_d_r)
|
||||||
|
fmap_rs.append(fmap_r)
|
||||||
|
y_d_gs.append(y_d_g)
|
||||||
|
fmap_gs.append(fmap_g)
|
||||||
|
|
||||||
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||||
|
|
||||||
|
|
||||||
|
def stft(x, fft_size, hop_size, win_length, window):
|
||||||
|
"""Perform STFT and convert to magnitude spectrogram.
|
||||||
|
Args:
|
||||||
|
x (Tensor): Input signal tensor (B, T).
|
||||||
|
fft_size (int): FFT size.
|
||||||
|
hop_size (int): Hop size.
|
||||||
|
win_length (int): Window length.
|
||||||
|
window (str): Window function type.
|
||||||
|
Returns:
|
||||||
|
Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1).
|
||||||
|
"""
|
||||||
|
x_stft = torch.stft(x, fft_size, hop_size, win_length, window, return_complex=True)
|
||||||
|
|
||||||
|
# NOTE(kan-bayashi): clamp is needed to avoid nan or inf
|
||||||
|
return torch.abs(x_stft).transpose(2, 1)
|
||||||
|
|
||||||
|
|
||||||
|
class SpecDiscriminator(nn.Module):
|
||||||
|
"""docstring for Discriminator."""
|
||||||
|
|
||||||
|
def __init__(self, fft_size=1024, shift_size=120, win_length=600, window="hann_window", use_spectral_norm=False):
|
||||||
|
super(SpecDiscriminator, self).__init__()
|
||||||
|
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
||||||
|
self.fft_size = fft_size
|
||||||
|
self.shift_size = shift_size
|
||||||
|
self.win_length = win_length
|
||||||
|
self.window = getattr(torch, window)(win_length)
|
||||||
|
self.discriminators = nn.ModuleList([
|
||||||
|
norm_f(nn.Conv2d(1, 32, kernel_size=(3, 9), padding=(1, 4))),
|
||||||
|
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1, 2), padding=(1, 4))),
|
||||||
|
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1, 2), padding=(1, 4))),
|
||||||
|
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1, 2), padding=(1, 4))),
|
||||||
|
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))),
|
||||||
|
])
|
||||||
|
|
||||||
|
self.out = norm_f(nn.Conv2d(32, 1, 3, 1, 1))
|
||||||
|
|
||||||
|
def forward(self, y):
|
||||||
|
|
||||||
|
fmap = []
|
||||||
|
y = y.squeeze(1)
|
||||||
|
y = stft(y, self.fft_size, self.shift_size, self.win_length, self.window.to(y.device))
|
||||||
|
y = y.unsqueeze(1)
|
||||||
|
for _, d in enumerate(self.discriminators):
|
||||||
|
y = d(y)
|
||||||
|
y = F.leaky_relu(y, LRELU_SLOPE)
|
||||||
|
fmap.append(y)
|
||||||
|
|
||||||
|
y = self.out(y)
|
||||||
|
fmap.append(y)
|
||||||
|
|
||||||
|
return torch.flatten(y, 1, -1), fmap
|
||||||
|
|||||||
@@ -13,7 +13,10 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from torch.nn.utils.parametrizations import weight_norm
|
try:
|
||||||
|
from torch.nn.utils.parametrizations import weight_norm
|
||||||
|
except ImportError:
|
||||||
|
from torch.nn.utils import weight_norm
|
||||||
|
|
||||||
|
|
||||||
class ConvRNNF0Predictor(nn.Module):
|
class ConvRNNF0Predictor(nn.Module):
|
||||||
|
|||||||
@@ -23,7 +23,10 @@ import torch.nn.functional as F
|
|||||||
from torch.nn import Conv1d
|
from torch.nn import Conv1d
|
||||||
from torch.nn import ConvTranspose1d
|
from torch.nn import ConvTranspose1d
|
||||||
from torch.nn.utils import remove_weight_norm
|
from torch.nn.utils import remove_weight_norm
|
||||||
from torch.nn.utils.parametrizations import weight_norm
|
try:
|
||||||
|
from torch.nn.utils.parametrizations import weight_norm
|
||||||
|
except ImportError:
|
||||||
|
from torch.nn.utils import weight_norm
|
||||||
from torch.distributions.uniform import Uniform
|
from torch.distributions.uniform import Uniform
|
||||||
|
|
||||||
from cosyvoice.transformer.activation import Snake
|
from cosyvoice.transformer.activation import Snake
|
||||||
|
|||||||
@@ -41,7 +41,7 @@ class HiFiGan(nn.Module):
|
|||||||
loss_fm = feature_loss(fmap_rs, fmap_gs)
|
loss_fm = feature_loss(fmap_rs, fmap_gs)
|
||||||
loss_mel = mel_loss(real_speech, generated_speech, self.mel_spec_transform)
|
loss_mel = mel_loss(real_speech, generated_speech, self.mel_spec_transform)
|
||||||
if self.tpr_loss_weight != 0:
|
if self.tpr_loss_weight != 0:
|
||||||
loss_tpr = tpr_loss(y_d_rs, y_d_gs, self.tpr_loss_tau)
|
loss_tpr = tpr_loss(y_d_gs, y_d_rs, self.tpr_loss_tau)
|
||||||
else:
|
else:
|
||||||
loss_tpr = torch.zeros(1).to(device)
|
loss_tpr = torch.zeros(1).to(device)
|
||||||
loss_f0 = F.l1_loss(generated_f0, pitch_feat)
|
loss_f0 = F.l1_loss(generated_f0, pitch_feat)
|
||||||
@@ -56,7 +56,7 @@ class HiFiGan(nn.Module):
|
|||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
generated_speech, generated_f0 = self.generator(batch, device)
|
generated_speech, generated_f0 = self.generator(batch, device)
|
||||||
# 2. calculate discriminator outputs
|
# 2. calculate discriminator outputs
|
||||||
y_d_rs, y_d_gs, fmap_rs, fmap_gs = self.discriminator(real_speech, generated_speech)
|
y_d_rs, y_d_gs, fmap_rs, fmap_gs = self.discriminator(real_speech, generated_speech.detach())
|
||||||
# 3. calculate discriminator losses, tpr losses [Optional]
|
# 3. calculate discriminator losses, tpr losses [Optional]
|
||||||
loss_disc, _, _ = discriminator_loss(y_d_rs, y_d_gs)
|
loss_disc, _, _ = discriminator_loss(y_d_rs, y_d_gs)
|
||||||
if self.tpr_loss_weight != 0:
|
if self.tpr_loss_weight != 0:
|
||||||
|
|||||||
@@ -11,6 +11,7 @@
|
|||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
import random
|
||||||
from typing import Dict, Optional, Callable, List, Generator
|
from typing import Dict, Optional, Callable, List, Generator
|
||||||
import torch
|
import torch
|
||||||
from torch import nn
|
from torch import nn
|
||||||
@@ -21,6 +22,7 @@ from cosyvoice.utils.common import IGNORE_ID
|
|||||||
from cosyvoice.transformer.label_smoothing_loss import LabelSmoothingLoss
|
from cosyvoice.transformer.label_smoothing_loss import LabelSmoothingLoss
|
||||||
from cosyvoice.utils.common import th_accuracy
|
from cosyvoice.utils.common import th_accuracy
|
||||||
from cosyvoice.utils.file_utils import logging
|
from cosyvoice.utils.file_utils import logging
|
||||||
|
from cosyvoice.utils.mask import make_pad_mask
|
||||||
|
|
||||||
|
|
||||||
class TransformerLM(torch.nn.Module):
|
class TransformerLM(torch.nn.Module):
|
||||||
@@ -169,9 +171,6 @@ class TransformerLM(torch.nn.Module):
|
|||||||
max_token_text_ratio: float = 20,
|
max_token_text_ratio: float = 20,
|
||||||
min_token_text_ratio: float = 2,
|
min_token_text_ratio: float = 2,
|
||||||
) -> Generator[torch.Tensor, None, None]:
|
) -> Generator[torch.Tensor, None, None]:
|
||||||
if self.fp16 is True:
|
|
||||||
embedding = embedding.half()
|
|
||||||
|
|
||||||
device = text.device
|
device = text.device
|
||||||
text = torch.concat([prompt_text, text], dim=1)
|
text = torch.concat([prompt_text, text], dim=1)
|
||||||
text_len += prompt_text_len
|
text_len += prompt_text_len
|
||||||
@@ -229,6 +228,17 @@ class Qwen2Encoder(torch.nn.Module):
|
|||||||
super().__init__()
|
super().__init__()
|
||||||
self.model = Qwen2ForCausalLM.from_pretrained(pretrain_path)
|
self.model = Qwen2ForCausalLM.from_pretrained(pretrain_path)
|
||||||
|
|
||||||
|
def forward(self, xs: torch.Tensor, xs_lens: torch.Tensor):
|
||||||
|
T = xs.size(1)
|
||||||
|
masks = ~make_pad_mask(xs_lens, T)
|
||||||
|
outs = self.model(
|
||||||
|
inputs_embeds=xs,
|
||||||
|
attention_mask=masks,
|
||||||
|
output_hidden_states=True,
|
||||||
|
return_dict=True,
|
||||||
|
)
|
||||||
|
return outs.hidden_states[-1], masks.unsqueeze(1)
|
||||||
|
|
||||||
def forward_one_step(self, xs, masks, cache=None):
|
def forward_one_step(self, xs, masks, cache=None):
|
||||||
input_masks = masks[:, -1, :]
|
input_masks = masks[:, -1, :]
|
||||||
outs = self.model(
|
outs = self.model(
|
||||||
@@ -283,6 +293,82 @@ class Qwen2LM(TransformerLM):
|
|||||||
self.sampling = sampling
|
self.sampling = sampling
|
||||||
self.mix_ratio = mix_ratio
|
self.mix_ratio = mix_ratio
|
||||||
|
|
||||||
|
def prepare_lm_input_target(self, text_token, text_token_emb, text_token_len, speech_token, speech_token_emb, speech_token_len):
|
||||||
|
lm_target, lm_input = [], []
|
||||||
|
text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
|
||||||
|
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
|
||||||
|
text_token_emb = unpad_sequence(text_token_emb, text_token_len.cpu(), batch_first=True)
|
||||||
|
speech_token_emb = unpad_sequence(speech_token_emb, speech_token_len.cpu(), batch_first=True)
|
||||||
|
for i in range(len(text_token)):
|
||||||
|
# bistream sequence
|
||||||
|
if random.random() < 0.5 and speech_token_len[i] / text_token_len[i] > self.mix_ratio[1] / self.mix_ratio[0]:
|
||||||
|
this_lm_target, this_lm_input = [], []
|
||||||
|
this_lm_target.append(IGNORE_ID)
|
||||||
|
this_lm_input.append(self.llm_embedding.weight[self.sos_eos].reshape(1, -1))
|
||||||
|
for j in range(((text_token_len[i] + 1) / self.mix_ratio[0]).ceil().int().item()):
|
||||||
|
this_text_token = text_token[i][j * self.mix_ratio[0]: (j + 1) * self.mix_ratio[0]].tolist()
|
||||||
|
this_speech_token = speech_token[i][j * self.mix_ratio[1]: (j + 1) * self.mix_ratio[1]].tolist()
|
||||||
|
if len(this_text_token) == self.mix_ratio[0]:
|
||||||
|
assert len(this_speech_token) == self.mix_ratio[1]
|
||||||
|
this_lm_target += [IGNORE_ID] * (self.mix_ratio[0] - 1)
|
||||||
|
this_lm_target += this_speech_token
|
||||||
|
this_lm_target.append(self.speech_token_size + 2)
|
||||||
|
this_lm_input.append(text_token_emb[i][j * self.mix_ratio[0]: (j + 1) * self.mix_ratio[0]])
|
||||||
|
this_lm_input.append(speech_token_emb[i][j * self.mix_ratio[1]: (j + 1) * self.mix_ratio[1]])
|
||||||
|
else:
|
||||||
|
this_lm_target += [-1] * len(this_text_token)
|
||||||
|
this_lm_target += speech_token[i][j * self.mix_ratio[1]:].tolist()
|
||||||
|
this_lm_target.append(self.speech_token_size)
|
||||||
|
this_lm_input.append(text_token_emb[i][j * self.mix_ratio[0]:])
|
||||||
|
this_lm_input.append(self.llm_embedding.weight[self.task_id].reshape(1, -1))
|
||||||
|
this_lm_input.append(speech_token_emb[i][j * self.mix_ratio[1]:])
|
||||||
|
this_lm_target, this_lm_input = torch.tensor(this_lm_target), torch.concat(this_lm_input, dim=0)
|
||||||
|
# unistream sequence
|
||||||
|
else:
|
||||||
|
this_lm_target = torch.tensor([IGNORE_ID] * (1 + text_token_len[i]) + speech_token[i].tolist() + [self.speech_token_size])
|
||||||
|
this_lm_input = torch.concat([self.llm_embedding.weight[self.sos_eos].reshape(1, -1), text_token_emb[i],
|
||||||
|
self.llm_embedding.weight[self.task_id].reshape(1, -1), speech_token_emb[i]], dim=0)
|
||||||
|
lm_target.append(this_lm_target)
|
||||||
|
lm_input.append(this_lm_input)
|
||||||
|
lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
|
||||||
|
lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
|
||||||
|
lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID)
|
||||||
|
return lm_target, lm_input, lm_input_len
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
batch: dict,
|
||||||
|
device: torch.device,
|
||||||
|
) -> Dict[str, Optional[torch.Tensor]]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
text: (B, L, D)
|
||||||
|
text_lengths: (B,)
|
||||||
|
audio: (B, T, N) or (B, T)
|
||||||
|
audio_lengths: (B,)
|
||||||
|
"""
|
||||||
|
text_token = batch['text_token'].to(device)
|
||||||
|
text_token_len = batch['text_token_len'].to(device)
|
||||||
|
speech_token = batch['speech_token'].to(device)
|
||||||
|
speech_token_len = batch['speech_token_len'].to(device)
|
||||||
|
|
||||||
|
# 1. encode text_token
|
||||||
|
text_token_emb = self.llm.model.model.embed_tokens(text_token)
|
||||||
|
|
||||||
|
# 2. encode speech_token
|
||||||
|
speech_token_emb = self.speech_embedding(speech_token)
|
||||||
|
|
||||||
|
# 3. prepare llm_input/target
|
||||||
|
lm_target, lm_input, lm_input_len = self.prepare_lm_input_target(text_token, text_token_emb, text_token_len, speech_token, speech_token_emb, speech_token_len)
|
||||||
|
lm_target = lm_target.to(device)
|
||||||
|
|
||||||
|
# 4. run lm forward
|
||||||
|
lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
|
||||||
|
logits = self.llm_decoder(lm_output)
|
||||||
|
loss = self.criterion_ce(logits, lm_target.to(device))
|
||||||
|
acc = th_accuracy(logits.view(-1, self.speech_token_size + 3), lm_target, ignore_label=IGNORE_ID)
|
||||||
|
return {'loss': loss, 'acc': acc}
|
||||||
|
|
||||||
@torch.inference_mode()
|
@torch.inference_mode()
|
||||||
def inference(
|
def inference(
|
||||||
self,
|
self,
|
||||||
@@ -393,8 +479,8 @@ class Qwen2LM(TransformerLM):
|
|||||||
while True:
|
while True:
|
||||||
seq_len = lm_input.shape[1] if cache is None else lm_input.shape[1] + cache[0][0].size(2)
|
seq_len = lm_input.shape[1] if cache is None else lm_input.shape[1] + cache[0][0].size(2)
|
||||||
y_pred, cache = self.llm.forward_one_step(lm_input,
|
y_pred, cache = self.llm.forward_one_step(lm_input,
|
||||||
masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool),
|
masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool),
|
||||||
cache=cache)
|
cache=cache)
|
||||||
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
||||||
if next_fill_index != -1 and len(out_tokens) == next_fill_index:
|
if next_fill_index != -1 and len(out_tokens) == next_fill_index:
|
||||||
top_ids = self.speech_token_size + 2
|
top_ids = self.speech_token_size + 2
|
||||||
|
|||||||
@@ -287,8 +287,16 @@ class EspnetRelPositionalEncoding(torch.nn.Module):
|
|||||||
Returns:
|
Returns:
|
||||||
torch.Tensor: Corresponding encoding
|
torch.Tensor: Corresponding encoding
|
||||||
"""
|
"""
|
||||||
pos_emb = self.pe[
|
# How to subscript a Union type:
|
||||||
:,
|
# https://github.com/pytorch/pytorch/issues/69434
|
||||||
self.pe.size(1) // 2 - size + 1: self.pe.size(1) // 2 + size,
|
if isinstance(offset, int):
|
||||||
]
|
pos_emb = self.pe[
|
||||||
|
:,
|
||||||
|
self.pe.size(1) // 2 - size - offset + 1: self.pe.size(1) // 2 + size + offset,
|
||||||
|
]
|
||||||
|
elif isinstance(offset, torch.Tensor):
|
||||||
|
pos_emb = self.pe[
|
||||||
|
:,
|
||||||
|
self.pe.size(1) // 2 - size - offset + 1: self.pe.size(1) // 2 + size + offset,
|
||||||
|
]
|
||||||
return pos_emb
|
return pos_emb
|
||||||
|
|||||||
@@ -56,11 +56,16 @@ class Upsample1D(nn.Module):
|
|||||||
# In this mode, first repeat interpolate, than conv with stride=1
|
# In this mode, first repeat interpolate, than conv with stride=1
|
||||||
self.conv = nn.Conv1d(self.channels, self.out_channels, stride * 2 + 1, stride=1, padding=0)
|
self.conv = nn.Conv1d(self.channels, self.out_channels, stride * 2 + 1, stride=1, padding=0)
|
||||||
|
|
||||||
def forward(self, inputs: torch.Tensor, input_lengths: torch.Tensor):
|
def forward(self, inputs: torch.Tensor, input_lengths: torch.Tensor, conv_cache: torch.Tensor = torch.zeros(0, 0, 0)) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||||
outputs = F.interpolate(inputs, scale_factor=float(self.stride), mode="nearest")
|
outputs = F.interpolate(inputs, scale_factor=float(self.stride), mode="nearest")
|
||||||
outputs = F.pad(outputs, (self.stride * 2, 0), value=0.0)
|
if conv_cache.size(2) == 0:
|
||||||
|
outputs = F.pad(outputs, (self.stride * 2, 0), value=0.0)
|
||||||
|
else:
|
||||||
|
assert conv_cache.size(2) == self.stride * 2
|
||||||
|
outputs = torch.concat([conv_cache, outputs], dim=2)
|
||||||
|
conv_cache_new = outputs[:, :, -self.stride * 2:]
|
||||||
outputs = self.conv(outputs)
|
outputs = self.conv(outputs)
|
||||||
return outputs, input_lengths * self.stride
|
return outputs, input_lengths * self.stride, conv_cache_new
|
||||||
|
|
||||||
|
|
||||||
class PreLookaheadLayer(nn.Module):
|
class PreLookaheadLayer(nn.Module):
|
||||||
@@ -78,22 +83,32 @@ class PreLookaheadLayer(nn.Module):
|
|||||||
kernel_size=3, stride=1, padding=0,
|
kernel_size=3, stride=1, padding=0,
|
||||||
)
|
)
|
||||||
|
|
||||||
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
def forward(self, inputs: torch.Tensor, context: torch.Tensor = torch.zeros(0, 0, 0), conv2_cache: torch.Tensor = torch.zeros(0, 0, 0)) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
"""
|
"""
|
||||||
inputs: (batch_size, seq_len, channels)
|
inputs: (batch_size, seq_len, channels)
|
||||||
"""
|
"""
|
||||||
outputs = inputs.transpose(1, 2).contiguous()
|
outputs = inputs.transpose(1, 2).contiguous()
|
||||||
|
context = context.transpose(1, 2).contiguous()
|
||||||
# look ahead
|
# look ahead
|
||||||
outputs = F.pad(outputs, (0, self.pre_lookahead_len), mode='constant', value=0.0)
|
if context.size(2) == 0:
|
||||||
|
outputs = F.pad(outputs, (0, self.pre_lookahead_len), mode='constant', value=0.0)
|
||||||
|
else:
|
||||||
|
assert context.size(2) == self.pre_lookahead_len
|
||||||
|
outputs = F.pad(torch.concat([outputs, context], dim=2), (0, self.pre_lookahead_len - context.size(2)), mode='constant', value=0.0)
|
||||||
outputs = F.leaky_relu(self.conv1(outputs))
|
outputs = F.leaky_relu(self.conv1(outputs))
|
||||||
# outputs
|
# outputs
|
||||||
outputs = F.pad(outputs, (2, 0), mode='constant', value=0.0)
|
if conv2_cache.size(2) == 0:
|
||||||
|
outputs = F.pad(outputs, (self.conv2.kernel_size[0] - 1, 0), mode='constant', value=0.0)
|
||||||
|
else:
|
||||||
|
assert conv2_cache.size(2) == self.conv2.kernel_size[0] - 1
|
||||||
|
outputs = torch.concat([conv2_cache, outputs], dim=2)
|
||||||
|
conv2_cache_new = outputs[:, :, -(self.conv2.kernel_size[0] - 1):]
|
||||||
outputs = self.conv2(outputs)
|
outputs = self.conv2(outputs)
|
||||||
outputs = outputs.transpose(1, 2).contiguous()
|
outputs = outputs.transpose(1, 2).contiguous()
|
||||||
|
|
||||||
# residual connection
|
# residual connection
|
||||||
outputs = outputs + inputs
|
outputs = outputs + inputs
|
||||||
return outputs
|
return outputs, conv2_cache_new
|
||||||
|
|
||||||
|
|
||||||
class UpsampleConformerEncoder(torch.nn.Module):
|
class UpsampleConformerEncoder(torch.nn.Module):
|
||||||
@@ -240,6 +255,7 @@ class UpsampleConformerEncoder(torch.nn.Module):
|
|||||||
xs_lens: torch.Tensor,
|
xs_lens: torch.Tensor,
|
||||||
decoding_chunk_size: int = 0,
|
decoding_chunk_size: int = 0,
|
||||||
num_decoding_left_chunks: int = -1,
|
num_decoding_left_chunks: int = -1,
|
||||||
|
streaming: bool = False,
|
||||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
"""Embed positions in tensor.
|
"""Embed positions in tensor.
|
||||||
|
|
||||||
@@ -270,30 +286,20 @@ class UpsampleConformerEncoder(torch.nn.Module):
|
|||||||
xs = self.global_cmvn(xs)
|
xs = self.global_cmvn(xs)
|
||||||
xs, pos_emb, masks = self.embed(xs, masks)
|
xs, pos_emb, masks = self.embed(xs, masks)
|
||||||
mask_pad = masks # (B, 1, T/subsample_rate)
|
mask_pad = masks # (B, 1, T/subsample_rate)
|
||||||
chunk_masks = add_optional_chunk_mask(xs, masks,
|
chunk_masks = add_optional_chunk_mask(xs, masks, False, False, 0, self.static_chunk_size if streaming is True else 0, -1)
|
||||||
self.use_dynamic_chunk,
|
|
||||||
self.use_dynamic_left_chunk,
|
|
||||||
decoding_chunk_size,
|
|
||||||
self.static_chunk_size,
|
|
||||||
num_decoding_left_chunks)
|
|
||||||
# lookahead + conformer encoder
|
# lookahead + conformer encoder
|
||||||
xs = self.pre_lookahead_layer(xs)
|
xs, _ = self.pre_lookahead_layer(xs)
|
||||||
xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad)
|
xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad)
|
||||||
|
|
||||||
# upsample + conformer encoder
|
# upsample + conformer encoder
|
||||||
xs = xs.transpose(1, 2).contiguous()
|
xs = xs.transpose(1, 2).contiguous()
|
||||||
xs, xs_lens = self.up_layer(xs, xs_lens)
|
xs, xs_lens, _ = self.up_layer(xs, xs_lens)
|
||||||
xs = xs.transpose(1, 2).contiguous()
|
xs = xs.transpose(1, 2).contiguous()
|
||||||
T = xs.size(1)
|
T = xs.size(1)
|
||||||
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
|
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
|
||||||
xs, pos_emb, masks = self.up_embed(xs, masks)
|
xs, pos_emb, masks = self.up_embed(xs, masks)
|
||||||
mask_pad = masks # (B, 1, T/subsample_rate)
|
mask_pad = masks # (B, 1, T/subsample_rate)
|
||||||
chunk_masks = add_optional_chunk_mask(xs, masks,
|
chunk_masks = add_optional_chunk_mask(xs, masks, False, False, 0, self.static_chunk_size * self.up_layer.stride if streaming is True else 0, -1)
|
||||||
self.use_dynamic_chunk,
|
|
||||||
self.use_dynamic_left_chunk,
|
|
||||||
decoding_chunk_size,
|
|
||||||
self.static_chunk_size * self.up_layer.stride,
|
|
||||||
num_decoding_left_chunks)
|
|
||||||
xs = self.forward_up_layers(xs, chunk_masks, pos_emb, mask_pad)
|
xs = self.forward_up_layers(xs, chunk_masks, pos_emb, mask_pad)
|
||||||
|
|
||||||
if self.normalize_before:
|
if self.normalize_before:
|
||||||
@@ -316,3 +322,100 @@ class UpsampleConformerEncoder(torch.nn.Module):
|
|||||||
for layer in self.up_encoders:
|
for layer in self.up_encoders:
|
||||||
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
|
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
|
||||||
return xs
|
return xs
|
||||||
|
|
||||||
|
@torch.jit.export
|
||||||
|
def forward_chunk(
|
||||||
|
self,
|
||||||
|
xs: torch.Tensor,
|
||||||
|
xs_lens: torch.Tensor,
|
||||||
|
offset: int = 0,
|
||||||
|
context: torch.Tensor = torch.zeros(0, 0, 0),
|
||||||
|
pre_lookahead_layer_conv2_cache: torch.Tensor = torch.zeros(0, 0, 0),
|
||||||
|
encoders_kv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0, 0),
|
||||||
|
upsample_offset: int = 0,
|
||||||
|
upsample_conv_cache: torch.Tensor = torch.zeros(0, 0, 0),
|
||||||
|
upsample_kv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0, 0)
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor, Tuple[int, torch.Tensor, torch.Tensor, int, torch.Tensor, torch.Tensor]]:
|
||||||
|
"""Embed positions in tensor.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
xs: padded input tensor (B, T, D)
|
||||||
|
xs_lens: input length (B)
|
||||||
|
decoding_chunk_size: decoding chunk size for dynamic chunk
|
||||||
|
0: default for training, use random dynamic chunk.
|
||||||
|
<0: for decoding, use full chunk.
|
||||||
|
>0: for decoding, use fixed chunk size as set.
|
||||||
|
num_decoding_left_chunks: number of left chunks, this is for decoding,
|
||||||
|
the chunk size is decoding_chunk_size.
|
||||||
|
>=0: use num_decoding_left_chunks
|
||||||
|
<0: use all left chunks
|
||||||
|
Returns:
|
||||||
|
encoder output tensor xs, and subsampled masks
|
||||||
|
xs: padded output tensor (B, T' ~= T/subsample_rate, D)
|
||||||
|
masks: torch.Tensor batch padding mask after subsample
|
||||||
|
(B, 1, T' ~= T/subsample_rate)
|
||||||
|
NOTE(xcsong):
|
||||||
|
We pass the `__call__` method of the modules instead of `forward` to the
|
||||||
|
checkpointing API because `__call__` attaches all the hooks of the module.
|
||||||
|
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
|
||||||
|
"""
|
||||||
|
assert xs.size(0) == 1
|
||||||
|
# tmp_masks is just for interface compatibility
|
||||||
|
tmp_masks = torch.ones(1,
|
||||||
|
xs.size(1),
|
||||||
|
device=xs.device,
|
||||||
|
dtype=torch.bool)
|
||||||
|
tmp_masks = tmp_masks.unsqueeze(1)
|
||||||
|
if self.global_cmvn is not None:
|
||||||
|
xs = self.global_cmvn(xs)
|
||||||
|
# NOTE(xcsong): Before embed, shape(xs) is (b=1, time, mel-dim)
|
||||||
|
xs, pos_emb, _ = self.embed(xs, tmp_masks, offset)
|
||||||
|
offset += xs.size(1)
|
||||||
|
tmp_masks = torch.ones(1,
|
||||||
|
context.size(1),
|
||||||
|
device=context.device,
|
||||||
|
dtype=torch.bool)
|
||||||
|
tmp_masks = tmp_masks.unsqueeze(1)
|
||||||
|
if context.size(1) != 0:
|
||||||
|
context, _, _ = self.embed(context, tmp_masks, offset)
|
||||||
|
|
||||||
|
# lookahead + conformer encoder
|
||||||
|
xs, pre_lookahead_layer_conv2_cache = self.pre_lookahead_layer(xs, context, pre_lookahead_layer_conv2_cache)
|
||||||
|
# NOTE in cache mode we do not need to call add_optional_chunk_mask
|
||||||
|
chunk_masks = torch.ones((1, xs.size(1), offset), dtype=torch.bool, device=xs.device)
|
||||||
|
mask_pad = torch.ones((0, 0, 0), dtype=torch.bool, device=xs.device)
|
||||||
|
encoders_kv_cache_list = []
|
||||||
|
for index, layer in enumerate(self.encoders):
|
||||||
|
xs, chunk_masks, encoders_kv_cache_new, _ = layer(xs, chunk_masks, pos_emb, mask_pad, encoders_kv_cache[index])
|
||||||
|
encoders_kv_cache_list.append(encoders_kv_cache_new)
|
||||||
|
encoders_kv_cache = torch.stack(encoders_kv_cache_list, dim=0)
|
||||||
|
|
||||||
|
# upsample
|
||||||
|
xs = xs.transpose(1, 2).contiguous()
|
||||||
|
xs, xs_lens, upsample_conv_cache = self.up_layer(xs, xs_lens, upsample_conv_cache)
|
||||||
|
xs = xs.transpose(1, 2).contiguous()
|
||||||
|
|
||||||
|
# tmp_masks is just for interface compatibility
|
||||||
|
tmp_masks = torch.ones(1,
|
||||||
|
xs.size(1),
|
||||||
|
device=xs.device,
|
||||||
|
dtype=torch.bool)
|
||||||
|
tmp_masks = tmp_masks.unsqueeze(1)
|
||||||
|
xs, pos_emb, masks = self.up_embed(xs, tmp_masks, upsample_offset)
|
||||||
|
upsample_offset += xs.size(1)
|
||||||
|
|
||||||
|
# conformer encoder
|
||||||
|
chunk_masks = torch.ones((1, xs.size(1), upsample_offset), dtype=torch.bool, device=xs.device)
|
||||||
|
mask_pad = torch.ones((0, 0, 0), dtype=torch.bool, device=xs.device)
|
||||||
|
upsample_kv_cache_list = []
|
||||||
|
for index, layer in enumerate(self.up_encoders):
|
||||||
|
xs, chunk_masks, upsample_kv_cache_new, _ = layer(xs, chunk_masks, pos_emb, mask_pad, upsample_kv_cache[index])
|
||||||
|
upsample_kv_cache_list.append(upsample_kv_cache_new)
|
||||||
|
upsample_kv_cache = torch.stack(upsample_kv_cache_list, dim=0)
|
||||||
|
|
||||||
|
if self.normalize_before:
|
||||||
|
xs = self.after_norm(xs)
|
||||||
|
# Here we assume the mask is not changed in encoder layers, so just
|
||||||
|
# return the masks before encoder layers, and the masks will be used
|
||||||
|
# for cross attention with decoder later
|
||||||
|
return xs, masks, (offset, pre_lookahead_layer_conv2_cache, encoders_kv_cache, upsample_offset, upsample_conv_cache, upsample_kv_cache)
|
||||||
|
|||||||
@@ -47,13 +47,8 @@ def load_wav(wav, target_sr):
|
|||||||
return speech
|
return speech
|
||||||
|
|
||||||
|
|
||||||
def convert_onnx_to_trt(trt_model, onnx_model, fp16):
|
def convert_onnx_to_trt(trt_model, trt_kwargs, onnx_model, fp16):
|
||||||
import tensorrt as trt
|
import tensorrt as trt
|
||||||
_min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2,), (2, 80), (2, 80, 4)]
|
|
||||||
_opt_shape = [(2, 80, 193), (2, 1, 193), (2, 80, 193), (2,), (2, 80), (2, 80, 193)]
|
|
||||||
_max_shape = [(2, 80, 6800), (2, 1, 6800), (2, 80, 6800), (2,), (2, 80), (2, 80, 6800)]
|
|
||||||
input_names = ["x", "mask", "mu", "t", "spks", "cond"]
|
|
||||||
|
|
||||||
logging.info("Converting onnx to trt...")
|
logging.info("Converting onnx to trt...")
|
||||||
network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
|
network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
|
||||||
logger = trt.Logger(trt.Logger.INFO)
|
logger = trt.Logger(trt.Logger.INFO)
|
||||||
@@ -72,8 +67,8 @@ def convert_onnx_to_trt(trt_model, onnx_model, fp16):
|
|||||||
print(parser.get_error(error))
|
print(parser.get_error(error))
|
||||||
raise ValueError('failed to parse {}'.format(onnx_model))
|
raise ValueError('failed to parse {}'.format(onnx_model))
|
||||||
# set input shapes
|
# set input shapes
|
||||||
for i in range(len(input_names)):
|
for i in range(len(trt_kwargs['input_names'])):
|
||||||
profile.set_shape(input_names[i], _min_shape[i], _opt_shape[i], _max_shape[i])
|
profile.set_shape(trt_kwargs['input_names'][i], trt_kwargs['min_shape'][i], trt_kwargs['opt_shape'][i], trt_kwargs['max_shape'][i])
|
||||||
tensor_dtype = trt.DataType.HALF if fp16 else trt.DataType.FLOAT
|
tensor_dtype = trt.DataType.HALF if fp16 else trt.DataType.FLOAT
|
||||||
# set input and output data type
|
# set input and output data type
|
||||||
for i in range(network.num_inputs):
|
for i in range(network.num_inputs):
|
||||||
@@ -87,3 +82,4 @@ def convert_onnx_to_trt(trt_model, onnx_model, fp16):
|
|||||||
# save trt engine
|
# save trt engine
|
||||||
with open(trt_model, "wb") as f:
|
with open(trt_model, "wb") as f:
|
||||||
f.write(engine_bytes)
|
f.write(engine_bytes)
|
||||||
|
logging.info("Succesfully convert onnx to trt...")
|
||||||
|
|||||||
@@ -15,7 +15,6 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from cosyvoice.utils.file_utils import logging
|
|
||||||
'''
|
'''
|
||||||
def subsequent_mask(
|
def subsequent_mask(
|
||||||
size: int,
|
size: int,
|
||||||
@@ -87,7 +86,7 @@ def subsequent_mask(
|
|||||||
return mask
|
return mask
|
||||||
|
|
||||||
|
|
||||||
def subsequent_chunk_mask_deprecated(
|
def subsequent_chunk_mask(
|
||||||
size: int,
|
size: int,
|
||||||
chunk_size: int,
|
chunk_size: int,
|
||||||
num_left_chunks: int = -1,
|
num_left_chunks: int = -1,
|
||||||
@@ -125,41 +124,6 @@ def subsequent_chunk_mask_deprecated(
|
|||||||
return ret
|
return ret
|
||||||
|
|
||||||
|
|
||||||
def subsequent_chunk_mask(
|
|
||||||
size: int,
|
|
||||||
chunk_size: int,
|
|
||||||
num_left_chunks: int = -1,
|
|
||||||
device: torch.device = torch.device("cpu"),
|
|
||||||
) -> torch.Tensor:
|
|
||||||
"""Create mask for subsequent steps (size, size) with chunk size,
|
|
||||||
this is for streaming encoder
|
|
||||||
|
|
||||||
Args:
|
|
||||||
size (int): size of mask
|
|
||||||
chunk_size (int): size of chunk
|
|
||||||
num_left_chunks (int): number of left chunks
|
|
||||||
<0: use full chunk
|
|
||||||
>=0: use num_left_chunks
|
|
||||||
device (torch.device): "cpu" or "cuda" or torch.Tensor.device
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
torch.Tensor: mask
|
|
||||||
|
|
||||||
Examples:
|
|
||||||
>>> subsequent_chunk_mask(4, 2)
|
|
||||||
[[1, 1, 0, 0],
|
|
||||||
[1, 1, 0, 0],
|
|
||||||
[1, 1, 1, 1],
|
|
||||||
[1, 1, 1, 1]]
|
|
||||||
"""
|
|
||||||
# NOTE this modified implementation meets onnx export requirements, but it doesn't support num_left_chunks
|
|
||||||
# actually this is not needed after we have inference cache implemented, will remove it later
|
|
||||||
pos_idx = torch.arange(size, device=device)
|
|
||||||
block_value = (torch.div(pos_idx, chunk_size, rounding_mode='trunc') + 1) * chunk_size
|
|
||||||
ret = pos_idx.unsqueeze(0) < block_value.unsqueeze(1)
|
|
||||||
return ret
|
|
||||||
|
|
||||||
|
|
||||||
def add_optional_chunk_mask(xs: torch.Tensor,
|
def add_optional_chunk_mask(xs: torch.Tensor,
|
||||||
masks: torch.Tensor,
|
masks: torch.Tensor,
|
||||||
use_dynamic_chunk: bool,
|
use_dynamic_chunk: bool,
|
||||||
@@ -233,8 +197,8 @@ def add_optional_chunk_mask(xs: torch.Tensor,
|
|||||||
chunk_masks = masks
|
chunk_masks = masks
|
||||||
assert chunk_masks.dtype == torch.bool
|
assert chunk_masks.dtype == torch.bool
|
||||||
if (chunk_masks.sum(dim=-1) == 0).sum().item() != 0:
|
if (chunk_masks.sum(dim=-1) == 0).sum().item() != 0:
|
||||||
logging.warning('get chunk_masks all false at some timestep, force set to true, make sure they are masked in futuer computation!')
|
print('get chunk_masks all false at some timestep, force set to true, make sure they are masked in futuer computation!')
|
||||||
chunk_masks[chunk_masks.sum(dim=-1)==0] = True
|
chunk_masks[chunk_masks.sum(dim=-1) == 0] = True
|
||||||
return chunk_masks
|
return chunk_masks
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -286,11 +286,15 @@ def update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict):
|
|||||||
# optimizer.step().
|
# optimizer.step().
|
||||||
if torch.isfinite(grad_norm):
|
if torch.isfinite(grad_norm):
|
||||||
scaler.step(optimizer)
|
scaler.step(optimizer)
|
||||||
|
else:
|
||||||
|
logging.warning('get infinite grad_norm, check your code/data if it appears frequently')
|
||||||
scaler.update()
|
scaler.update()
|
||||||
else:
|
else:
|
||||||
grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip'])
|
grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip'])
|
||||||
if torch.isfinite(grad_norm):
|
if torch.isfinite(grad_norm):
|
||||||
optimizer.step()
|
optimizer.step()
|
||||||
|
else:
|
||||||
|
logging.warning('get infinite grad_norm, check your code/data if it appears frequently')
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
scheduler.step()
|
scheduler.step()
|
||||||
info_dict["lr"] = optimizer.param_groups[0]['lr']
|
info_dict["lr"] = optimizer.param_groups[0]['lr']
|
||||||
@@ -336,7 +340,7 @@ def log_per_save(writer, info_dict):
|
|||||||
rank = int(os.environ.get('RANK', 0))
|
rank = int(os.environ.get('RANK', 0))
|
||||||
logging.info(
|
logging.info(
|
||||||
'Epoch {} Step {} CV info lr {} {} rank {}'.format(
|
'Epoch {} Step {} CV info lr {} {} rank {}'.format(
|
||||||
epoch, step + 1, lr, rank, ' '.join(['{}_{}'.format(k, v) for k, v in loss_dict.items()])))
|
epoch, step + 1, lr, rank, ' '.join(['{} {}'.format(k, v) for k, v in loss_dict.items()])))
|
||||||
|
|
||||||
if writer is not None:
|
if writer is not None:
|
||||||
for k in ['epoch', 'lr']:
|
for k in ['epoch', 'lr']:
|
||||||
|
|||||||
@@ -147,7 +147,7 @@ hifigan: !new:cosyvoice.hifigan.hifigan.HiFiGan
|
|||||||
generator: !ref <hift>
|
generator: !ref <hift>
|
||||||
discriminator: !new:cosyvoice.hifigan.discriminator.MultipleDiscriminator
|
discriminator: !new:cosyvoice.hifigan.discriminator.MultipleDiscriminator
|
||||||
mpd: !new:matcha.hifigan.models.MultiPeriodDiscriminator
|
mpd: !new:matcha.hifigan.models.MultiPeriodDiscriminator
|
||||||
mrd: !new:cosyvoice.hifigan.discriminator.MultiResolutionDiscriminator
|
mrd: !new:cosyvoice.hifigan.discriminator.MultiResSpecDiscriminator
|
||||||
mel_spec_transform: [
|
mel_spec_transform: [
|
||||||
!ref <mel_spec_transform1>
|
!ref <mel_spec_transform1>
|
||||||
]
|
]
|
||||||
|
|||||||
@@ -147,7 +147,7 @@ hifigan: !new:cosyvoice.hifigan.hifigan.HiFiGan
|
|||||||
generator: !ref <hift>
|
generator: !ref <hift>
|
||||||
discriminator: !new:cosyvoice.hifigan.discriminator.MultipleDiscriminator
|
discriminator: !new:cosyvoice.hifigan.discriminator.MultipleDiscriminator
|
||||||
mpd: !new:matcha.hifigan.models.MultiPeriodDiscriminator
|
mpd: !new:matcha.hifigan.models.MultiPeriodDiscriminator
|
||||||
mrd: !new:cosyvoice.hifigan.discriminator.MultiResolutionDiscriminator
|
mrd: !new:cosyvoice.hifigan.discriminator.MultiResSpecDiscriminator
|
||||||
mel_spec_transform: [
|
mel_spec_transform: [
|
||||||
!ref <mel_spec_transform1>
|
!ref <mel_spec_transform1>
|
||||||
]
|
]
|
||||||
|
|||||||
233
examples/libritts/cosyvoice2/conf/cosyvoice2.yaml
Normal file
233
examples/libritts/cosyvoice2/conf/cosyvoice2.yaml
Normal file
@@ -0,0 +1,233 @@
|
|||||||
|
# set random seed, so that you may reproduce your result.
|
||||||
|
__set_seed1: !apply:random.seed [1986]
|
||||||
|
__set_seed2: !apply:numpy.random.seed [1986]
|
||||||
|
__set_seed3: !apply:torch.manual_seed [1986]
|
||||||
|
__set_seed4: !apply:torch.cuda.manual_seed_all [1986]
|
||||||
|
|
||||||
|
# fixed params
|
||||||
|
sample_rate: 24000
|
||||||
|
llm_input_size: 896
|
||||||
|
llm_output_size: 896
|
||||||
|
spk_embed_dim: 192
|
||||||
|
qwen_pretrain_path: ''
|
||||||
|
token_frame_rate: 25
|
||||||
|
token_mel_ratio: 2
|
||||||
|
|
||||||
|
# stream related params
|
||||||
|
chunk_size: 25 # streaming inference chunk size, in token
|
||||||
|
num_decoding_left_chunks: 1 # streaming inference flow decoder left chunk size, <0 means use all left chunks
|
||||||
|
|
||||||
|
# model params
|
||||||
|
# for all class/function included in this repo, we use !<name> or !<new> for intialization, so that user may find all corresponding class/function according to one single yaml.
|
||||||
|
# for system/third_party class/function, we do not require this.
|
||||||
|
llm: !new:cosyvoice.llm.llm.Qwen2LM
|
||||||
|
llm_input_size: !ref <llm_input_size>
|
||||||
|
llm_output_size: !ref <llm_output_size>
|
||||||
|
speech_token_size: 6561
|
||||||
|
length_normalized_loss: True
|
||||||
|
lsm_weight: 0
|
||||||
|
mix_ratio: [5, 15]
|
||||||
|
llm: !new:cosyvoice.llm.llm.Qwen2Encoder
|
||||||
|
pretrain_path: !ref <qwen_pretrain_path>
|
||||||
|
sampling: !name:cosyvoice.utils.common.ras_sampling
|
||||||
|
top_p: 0.8
|
||||||
|
top_k: 25
|
||||||
|
win_size: 10
|
||||||
|
tau_r: 0.1
|
||||||
|
|
||||||
|
flow: !new:cosyvoice.flow.flow.CausalMaskedDiffWithXvec
|
||||||
|
input_size: 512
|
||||||
|
output_size: 80
|
||||||
|
spk_embed_dim: !ref <spk_embed_dim>
|
||||||
|
output_type: 'mel'
|
||||||
|
vocab_size: 6561
|
||||||
|
input_frame_rate: !ref <token_frame_rate>
|
||||||
|
only_mask_loss: True
|
||||||
|
token_mel_ratio: !ref <token_mel_ratio>
|
||||||
|
pre_lookahead_len: 3
|
||||||
|
encoder: !new:cosyvoice.transformer.upsample_encoder.UpsampleConformerEncoder
|
||||||
|
output_size: 512
|
||||||
|
attention_heads: 8
|
||||||
|
linear_units: 2048
|
||||||
|
num_blocks: 6
|
||||||
|
dropout_rate: 0.1
|
||||||
|
positional_dropout_rate: 0.1
|
||||||
|
attention_dropout_rate: 0.1
|
||||||
|
normalize_before: True
|
||||||
|
input_layer: 'linear'
|
||||||
|
pos_enc_layer_type: 'rel_pos_espnet'
|
||||||
|
selfattention_layer_type: 'rel_selfattn'
|
||||||
|
input_size: 512
|
||||||
|
use_cnn_module: False
|
||||||
|
macaron_style: False
|
||||||
|
static_chunk_size: !ref <chunk_size>
|
||||||
|
decoder: !new:cosyvoice.flow.flow_matching.CausalConditionalCFM
|
||||||
|
in_channels: 240
|
||||||
|
n_spks: 1
|
||||||
|
spk_emb_dim: 80
|
||||||
|
cfm_params: !new:omegaconf.DictConfig
|
||||||
|
content:
|
||||||
|
sigma_min: 1e-06
|
||||||
|
solver: 'euler'
|
||||||
|
t_scheduler: 'cosine'
|
||||||
|
training_cfg_rate: 0.2
|
||||||
|
inference_cfg_rate: 0.7
|
||||||
|
reg_loss_type: 'l1'
|
||||||
|
estimator: !new:cosyvoice.flow.decoder.CausalConditionalDecoder
|
||||||
|
in_channels: 320
|
||||||
|
out_channels: 80
|
||||||
|
channels: [256]
|
||||||
|
dropout: 0.0
|
||||||
|
attention_head_dim: 64
|
||||||
|
n_blocks: 4
|
||||||
|
num_mid_blocks: 12
|
||||||
|
num_heads: 8
|
||||||
|
act_fn: 'gelu'
|
||||||
|
static_chunk_size: !ref <chunk_size> * <token_mel_ratio>
|
||||||
|
num_decoding_left_chunks: !ref <num_decoding_left_chunks>
|
||||||
|
|
||||||
|
hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
|
||||||
|
in_channels: 80
|
||||||
|
base_channels: 512
|
||||||
|
nb_harmonics: 8
|
||||||
|
sampling_rate: !ref <sample_rate>
|
||||||
|
nsf_alpha: 0.1
|
||||||
|
nsf_sigma: 0.003
|
||||||
|
nsf_voiced_threshold: 10
|
||||||
|
upsample_rates: [8, 5, 3]
|
||||||
|
upsample_kernel_sizes: [16, 11, 7]
|
||||||
|
istft_params:
|
||||||
|
n_fft: 16
|
||||||
|
hop_len: 4
|
||||||
|
resblock_kernel_sizes: [3, 7, 11]
|
||||||
|
resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
|
||||||
|
source_resblock_kernel_sizes: [7, 7, 11]
|
||||||
|
source_resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
|
||||||
|
lrelu_slope: 0.1
|
||||||
|
audio_limit: 0.99
|
||||||
|
f0_predictor: !new:cosyvoice.hifigan.f0_predictor.ConvRNNF0Predictor
|
||||||
|
num_class: 1
|
||||||
|
in_channels: 80
|
||||||
|
cond_channels: 512
|
||||||
|
|
||||||
|
# gan related module
|
||||||
|
mel_spec_transform1: !name:matcha.utils.audio.mel_spectrogram
|
||||||
|
n_fft: 1920
|
||||||
|
num_mels: 80
|
||||||
|
sampling_rate: !ref <sample_rate>
|
||||||
|
hop_size: 480
|
||||||
|
win_size: 1920
|
||||||
|
fmin: 0
|
||||||
|
fmax: null
|
||||||
|
center: False
|
||||||
|
hifigan: !new:cosyvoice.hifigan.hifigan.HiFiGan
|
||||||
|
generator: !ref <hift>
|
||||||
|
discriminator: !new:cosyvoice.hifigan.discriminator.MultipleDiscriminator
|
||||||
|
mpd: !new:matcha.hifigan.models.MultiPeriodDiscriminator
|
||||||
|
mrd: !new:cosyvoice.hifigan.discriminator.MultiResSpecDiscriminator
|
||||||
|
mel_spec_transform: [
|
||||||
|
!ref <mel_spec_transform1>
|
||||||
|
]
|
||||||
|
|
||||||
|
# processor functions
|
||||||
|
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
|
||||||
|
get_tokenizer: !name:cosyvoice.tokenizer.tokenizer.get_qwen_tokenizer
|
||||||
|
token_path: !ref <qwen_pretrain_path>
|
||||||
|
skip_special_tokens: True
|
||||||
|
allowed_special: 'all'
|
||||||
|
tokenize: !name:cosyvoice.dataset.processor.tokenize
|
||||||
|
get_tokenizer: !ref <get_tokenizer>
|
||||||
|
allowed_special: !ref <allowed_special>
|
||||||
|
filter: !name:cosyvoice.dataset.processor.filter
|
||||||
|
max_length: 40960
|
||||||
|
min_length: 100
|
||||||
|
token_max_length: 200
|
||||||
|
token_min_length: 1
|
||||||
|
resample: !name:cosyvoice.dataset.processor.resample
|
||||||
|
resample_rate: !ref <sample_rate>
|
||||||
|
truncate: !name:cosyvoice.dataset.processor.truncate
|
||||||
|
truncate_length: 24480 # must be a multiplier of hop_size
|
||||||
|
feat_extractor: !name:matcha.utils.audio.mel_spectrogram
|
||||||
|
n_fft: 1920
|
||||||
|
num_mels: 80
|
||||||
|
sampling_rate: !ref <sample_rate>
|
||||||
|
hop_size: 480
|
||||||
|
win_size: 1920
|
||||||
|
fmin: 0
|
||||||
|
fmax: 8000
|
||||||
|
center: False
|
||||||
|
compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
|
||||||
|
feat_extractor: !ref <feat_extractor>
|
||||||
|
compute_f0: !name:cosyvoice.dataset.processor.compute_f0
|
||||||
|
sample_rate: !ref <sample_rate>
|
||||||
|
hop_size: 480
|
||||||
|
parse_embedding: !name:cosyvoice.dataset.processor.parse_embedding
|
||||||
|
normalize: True
|
||||||
|
shuffle: !name:cosyvoice.dataset.processor.shuffle
|
||||||
|
shuffle_size: 1000
|
||||||
|
sort: !name:cosyvoice.dataset.processor.sort
|
||||||
|
sort_size: 500 # sort_size should be less than shuffle_size
|
||||||
|
batch: !name:cosyvoice.dataset.processor.batch
|
||||||
|
batch_type: 'dynamic'
|
||||||
|
max_frames_in_batch: 2000
|
||||||
|
padding: !name:cosyvoice.dataset.processor.padding
|
||||||
|
use_spk_embedding: False # change to True during sft
|
||||||
|
|
||||||
|
|
||||||
|
# dataset processor pipeline
|
||||||
|
data_pipeline: [
|
||||||
|
!ref <parquet_opener>,
|
||||||
|
!ref <tokenize>,
|
||||||
|
!ref <filter>,
|
||||||
|
!ref <resample>,
|
||||||
|
!ref <compute_fbank>,
|
||||||
|
!ref <parse_embedding>,
|
||||||
|
!ref <shuffle>,
|
||||||
|
!ref <sort>,
|
||||||
|
!ref <batch>,
|
||||||
|
!ref <padding>,
|
||||||
|
]
|
||||||
|
data_pipeline_gan: [
|
||||||
|
!ref <parquet_opener>,
|
||||||
|
!ref <tokenize>,
|
||||||
|
!ref <filter>,
|
||||||
|
!ref <resample>,
|
||||||
|
!ref <truncate>,
|
||||||
|
!ref <compute_fbank>,
|
||||||
|
!ref <compute_f0>,
|
||||||
|
!ref <parse_embedding>,
|
||||||
|
!ref <shuffle>,
|
||||||
|
!ref <sort>,
|
||||||
|
!ref <batch>,
|
||||||
|
!ref <padding>,
|
||||||
|
]
|
||||||
|
|
||||||
|
# llm flow train conf
|
||||||
|
train_conf:
|
||||||
|
optim: adam
|
||||||
|
optim_conf:
|
||||||
|
lr: 1e-5 # change to 1e-5 during sft
|
||||||
|
scheduler: constantlr # change to constantlr during sft
|
||||||
|
scheduler_conf:
|
||||||
|
warmup_steps: 2500
|
||||||
|
max_epoch: 200
|
||||||
|
grad_clip: 5
|
||||||
|
accum_grad: 2
|
||||||
|
log_interval: 100
|
||||||
|
save_per_step: -1
|
||||||
|
|
||||||
|
# gan train conf
|
||||||
|
train_conf_gan:
|
||||||
|
optim: adam
|
||||||
|
optim_conf:
|
||||||
|
lr: 0.0002 # use small lr for gan training
|
||||||
|
scheduler: constantlr
|
||||||
|
optim_d: adam
|
||||||
|
optim_conf_d:
|
||||||
|
lr: 0.0002 # use small lr for gan training
|
||||||
|
scheduler_d: constantlr
|
||||||
|
max_epoch: 200
|
||||||
|
grad_clip: 5
|
||||||
|
accum_grad: 1 # in gan training, accum_grad must be 1
|
||||||
|
log_interval: 100
|
||||||
|
save_per_step: -1
|
||||||
42
examples/libritts/cosyvoice2/conf/ds_stage2.json
Normal file
42
examples/libritts/cosyvoice2/conf/ds_stage2.json
Normal file
@@ -0,0 +1,42 @@
|
|||||||
|
{
|
||||||
|
"train_micro_batch_size_per_gpu": 1,
|
||||||
|
"gradient_accumulation_steps": 1,
|
||||||
|
"steps_per_print": 100,
|
||||||
|
"gradient_clipping": 5,
|
||||||
|
"fp16": {
|
||||||
|
"enabled": false,
|
||||||
|
"auto_cast": false,
|
||||||
|
"loss_scale": 0,
|
||||||
|
"initial_scale_power": 16,
|
||||||
|
"loss_scale_window": 256,
|
||||||
|
"hysteresis": 2,
|
||||||
|
"consecutive_hysteresis": false,
|
||||||
|
"min_loss_scale": 1
|
||||||
|
},
|
||||||
|
"bf16": {
|
||||||
|
"enabled": false
|
||||||
|
},
|
||||||
|
"zero_force_ds_cpu_optimizer": false,
|
||||||
|
"zero_optimization": {
|
||||||
|
"stage": 2,
|
||||||
|
"offload_optimizer": {
|
||||||
|
"device": "none",
|
||||||
|
"pin_memory": true
|
||||||
|
},
|
||||||
|
"allgather_partitions": true,
|
||||||
|
"allgather_bucket_size": 5e8,
|
||||||
|
"overlap_comm": false,
|
||||||
|
"reduce_scatter": true,
|
||||||
|
"reduce_bucket_size": 5e8,
|
||||||
|
"contiguous_gradients" : true
|
||||||
|
},
|
||||||
|
"optimizer": {
|
||||||
|
"type": "AdamW",
|
||||||
|
"params": {
|
||||||
|
"lr": 0.001,
|
||||||
|
"weight_decay": 0.0001,
|
||||||
|
"torch_adam": true,
|
||||||
|
"adam_w_mode": true
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
1
examples/libritts/cosyvoice2/local
Symbolic link
1
examples/libritts/cosyvoice2/local
Symbolic link
@@ -0,0 +1 @@
|
|||||||
|
../cosyvoice/local
|
||||||
3
examples/libritts/cosyvoice2/path.sh
Normal file
3
examples/libritts/cosyvoice2/path.sh
Normal file
@@ -0,0 +1,3 @@
|
|||||||
|
# NOTE(kan-bayashi): Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
|
||||||
|
export PYTHONIOENCODING=UTF-8
|
||||||
|
export PYTHONPATH=../../../:../../../third_party/Matcha-TTS:$PYTHONPATH
|
||||||
130
examples/libritts/cosyvoice2/run.sh
Normal file
130
examples/libritts/cosyvoice2/run.sh
Normal file
@@ -0,0 +1,130 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# Copyright 2024 Alibaba Inc. All Rights Reserved.
|
||||||
|
. ./path.sh || exit 1;
|
||||||
|
|
||||||
|
stage=-1
|
||||||
|
stop_stage=3
|
||||||
|
|
||||||
|
data_url=www.openslr.org/resources/60
|
||||||
|
data_dir=/mnt/lyuxiang.lx/data/tts/openslr/libritts
|
||||||
|
pretrained_model_dir=../../../pretrained_models/CosyVoice2-0.5B
|
||||||
|
|
||||||
|
if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
|
||||||
|
echo "Data Download"
|
||||||
|
for part in dev-clean test-clean dev-other test-other train-clean-100 train-clean-360 train-other-500; do
|
||||||
|
local/download_and_untar.sh ${data_dir} ${data_url} ${part}
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
|
||||||
|
echo "Data preparation, prepare wav.scp/text/utt2spk/spk2utt"
|
||||||
|
for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
|
||||||
|
mkdir -p data/$x
|
||||||
|
python local/prepare_data.py --src_dir $data_dir/LibriTTS/$x --des_dir data/$x
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
||||||
|
echo "Extract campplus speaker embedding, you will get spk2embedding.pt and utt2embedding.pt in data/$x dir"
|
||||||
|
for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
|
||||||
|
tools/extract_embedding.py --dir data/$x \
|
||||||
|
--onnx_path $pretrained_model_dir/campplus.onnx
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
||||||
|
echo "Extract discrete speech token, you will get utt2speech_token.pt in data/$x dir"
|
||||||
|
for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
|
||||||
|
tools/extract_speech_token.py --dir data/$x \
|
||||||
|
--onnx_path $pretrained_model_dir/speech_tokenizer_v2.onnx
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
||||||
|
echo "Prepare required parquet format data, you should have prepared wav.scp/text/utt2spk/spk2utt/utt2embedding.pt/spk2embedding.pt/utt2speech_token.pt"
|
||||||
|
for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
|
||||||
|
mkdir -p data/$x/parquet
|
||||||
|
tools/make_parquet_list.py --num_utts_per_parquet 1000 \
|
||||||
|
--num_processes 10 \
|
||||||
|
--src_dir data/$x \
|
||||||
|
--des_dir data/$x/parquet
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
# inference
|
||||||
|
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
||||||
|
echo "Run inference. Please make sure utt in tts_text is in prompt_data"
|
||||||
|
# TODO consider remove bin/inference.py, or use similar initilization method as in readme
|
||||||
|
for mode in sft zero_shot; do
|
||||||
|
python cosyvoice/bin/inference.py --mode $mode \
|
||||||
|
--gpu 0 \
|
||||||
|
--config conf/cosyvoice2.yaml \
|
||||||
|
--prompt_data data/test-clean/parquet/data.list \
|
||||||
|
--prompt_utt2data data/test-clean/parquet/utt2data.list \
|
||||||
|
--tts_text `pwd`/tts_text.json \
|
||||||
|
--qwen_pretrain_path $pretrained_model_dir/CosyVoice-BlankEN \
|
||||||
|
--llm_model $pretrained_model_dir/llm.pt \
|
||||||
|
--flow_model $pretrained_model_dir/flow.pt \
|
||||||
|
--hifigan_model $pretrained_model_dir/hift.pt \
|
||||||
|
--result_dir `pwd`/exp/cosyvoice/test-clean/$mode
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
# train llm
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||||
|
num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
|
||||||
|
job_id=1986
|
||||||
|
dist_backend="nccl"
|
||||||
|
num_workers=2
|
||||||
|
prefetch=100
|
||||||
|
train_engine=torch_ddp
|
||||||
|
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
||||||
|
echo "Run train. We only support llm traning for now. If your want to train from scratch, please use conf/cosyvoice.fromscratch.yaml"
|
||||||
|
if [ $train_engine == 'deepspeed' ]; then
|
||||||
|
echo "Notice deepspeed has its own optimizer config. Modify conf/ds_stage2.json if necessary"
|
||||||
|
fi
|
||||||
|
cat data/{train-clean-100,train-clean-360,train-other-500}/parquet/data.list > data/train.data.list
|
||||||
|
cat data/{dev-clean,dev-other}/parquet/data.list > data/dev.data.list
|
||||||
|
# NOTE will update llm/hift training later
|
||||||
|
for model in llm flow; do
|
||||||
|
torchrun --nnodes=1 --nproc_per_node=$num_gpus \
|
||||||
|
--rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:1234" \
|
||||||
|
cosyvoice/bin/train.py \
|
||||||
|
--train_engine $train_engine \
|
||||||
|
--config conf/cosyvoice2.yaml \
|
||||||
|
--train_data data/train.data.list \
|
||||||
|
--cv_data data/dev.data.list \
|
||||||
|
--qwen_pretrain_path $pretrained_model_dir/CosyVoice-BlankEN \
|
||||||
|
--model $model \
|
||||||
|
--checkpoint $pretrained_model_dir/$model.pt \
|
||||||
|
--model_dir `pwd`/exp/cosyvoice2/$model/$train_engine \
|
||||||
|
--tensorboard_dir `pwd`/tensorboard/cosyvoice2/$model/$train_engine \
|
||||||
|
--ddp.dist_backend $dist_backend \
|
||||||
|
--num_workers ${num_workers} \
|
||||||
|
--prefetch ${prefetch} \
|
||||||
|
--pin_memory \
|
||||||
|
--use_amp \
|
||||||
|
--deepspeed_config ./conf/ds_stage2.json \
|
||||||
|
--deepspeed.save_states model+optimizer
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
# average model
|
||||||
|
average_num=5
|
||||||
|
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
|
||||||
|
for model in llm flow hifigan; do
|
||||||
|
decode_checkpoint=`pwd`/exp/cosyvoice/$model/$train_engine/${model}.pt
|
||||||
|
echo "do model average and final checkpoint is $decode_checkpoint"
|
||||||
|
python cosyvoice/bin/average_model.py \
|
||||||
|
--dst_model $decode_checkpoint \
|
||||||
|
--src_path `pwd`/exp/cosyvoice/$model/$train_engine \
|
||||||
|
--num ${average_num} \
|
||||||
|
--val_best
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then
|
||||||
|
echo "Export your model for inference speedup. Remember copy your llm or flow model to model_dir"
|
||||||
|
python cosyvoice/bin/export_jit.py --model_dir $pretrained_model_dir
|
||||||
|
python cosyvoice/bin/export_onnx.py --model_dir $pretrained_model_dir
|
||||||
|
fi
|
||||||
5
examples/libritts/cosyvoice2/tts_text.json
Normal file
5
examples/libritts/cosyvoice2/tts_text.json
Normal file
@@ -0,0 +1,5 @@
|
|||||||
|
{
|
||||||
|
"1089_134686_000002_000000": [
|
||||||
|
"hello, my name is Jack. What is your name?"
|
||||||
|
]
|
||||||
|
}
|
||||||
@@ -13,7 +13,7 @@ inflect==7.3.1
|
|||||||
librosa==0.10.2
|
librosa==0.10.2
|
||||||
lightning==2.2.4
|
lightning==2.2.4
|
||||||
matplotlib==3.7.5
|
matplotlib==3.7.5
|
||||||
modelscope==1.15.0
|
modelscope==1.20.0
|
||||||
networkx==3.1
|
networkx==3.1
|
||||||
omegaconf==2.3.0
|
omegaconf==2.3.0
|
||||||
onnx==1.16.0
|
onnx==1.16.0
|
||||||
@@ -21,6 +21,7 @@ onnxruntime-gpu==1.18.0; sys_platform == 'linux'
|
|||||||
onnxruntime==1.18.0; sys_platform == 'darwin' or sys_platform == 'win32'
|
onnxruntime==1.18.0; sys_platform == 'darwin' or sys_platform == 'win32'
|
||||||
openai-whisper==20231117
|
openai-whisper==20231117
|
||||||
protobuf==4.25
|
protobuf==4.25
|
||||||
|
pyarrow==18.1.0
|
||||||
pydantic==2.7.0
|
pydantic==2.7.0
|
||||||
pyworld==0.3.4
|
pyworld==0.3.4
|
||||||
rich==13.7.1
|
rich==13.7.1
|
||||||
|
|||||||
Reference in New Issue
Block a user