init step-audio2 token2wav

This commit is contained in:
yuekaiz
2025-09-18 19:07:23 +08:00
parent 0b357ba25d
commit b207c60885
6 changed files with 1524 additions and 0 deletions

View File

@@ -0,0 +1,455 @@
# Copyright 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import json
import math
import os
import re
import threading
import time
from typing import Dict, List, Tuple, Optional, Union
import numpy as np
import torch
from torch.utils.dlpack import from_dlpack, to_dlpack
import triton_python_backend_utils as pb_utils
from transformers import AutoTokenizer
import torchaudio
from matcha.utils.audio import mel_spectrogram
ORIGINAL_VOCAB_SIZE = 151663
torch.set_num_threads(1)
class TritonPythonModel:
"""Triton Python model for Spark TTS.
This model orchestrates the end-to-end TTS pipeline by coordinating
between audio tokenizer, LLM, and vocoder components.
"""
def initialize(self, args):
"""Initialize the model.
Args:
args: Dictionary containing model configuration
"""
self.logger = pb_utils.Logger
# Parse model parameters
self.model_config = json.loads(args['model_config'])
parameters = self.model_config['parameters']
model_params = {k: v["string_value"] for k, v in parameters.items()}
self.logger.log_info(f"model_params:{model_params}")
self.dynamic_chunk_strategy = model_params.get("dynamic_chunk_strategy", "exponential") # "exponential" or "time_based"
self.logger.log_info(f"Using dynamic chunk strategy: {self.dynamic_chunk_strategy}")
# Initialize tokenizer
llm_tokenizer_dir = model_params["llm_tokenizer_dir"]
self.tokenizer = AutoTokenizer.from_pretrained(llm_tokenizer_dir)
self.prompt_template = "<|sos|>{input_text}<|task_id|>"
self.eos_token_id = self.tokenizer.convert_tokens_to_ids("<|eos1|>")
self.device = torch.device("cuda")
self.decoupled = pb_utils.using_decoupled_model_transaction_policy(self.model_config)
self.token_frame_rate = 25
self.flow_pre_lookahead_len = 3
self.token_hop_len = 15
spk_info_path = os.path.join(model_params["model_dir"], "spk2info.pt")
if not os.path.exists(spk_info_path):
raise ValueError(f"spk2info.pt not found in {model_params['model_dir']}")
spk_info = torch.load(spk_info_path, map_location="cpu", weights_only=False)
self.default_spk_info = spk_info["001"]
def forward_llm(self, input_ids):
"""
Prepares the response from the language model based on the provided
inputs. Creates a `pb_utils.InferenceRequest` object with passed
`llm_request_inputs` to send to a decoupled TensorRTLLM model.
For each response from the language model:
- Checks for errors and raise an exception if any are found.
- Extracts the "output_ids" tensor from the response.
- Determines the finish reason based on the presence of the
end-of-sequence token or reaching the maximum length.
- Appends the generated token IDs to `output_ids`.
- If the finish reason is determined, decodes the output IDs to text
and prepares the final response.
The final response includes the generated text, finish reason,
completion tokens, prompt tokens, and total tokens.
Parameters
----------
- llm_request_inputs (dict): A dictionary containing the inputs for the language model.
Returns
-------
- pb_utils.InferenceResponse: The response object containing the generated text and additional metadata.
"""
# convert input_ids to numpy, with shape [1, sequence_length]
input_ids = input_ids.cpu().numpy()
max_tokens = 750
input_dict = {
"request_output_len": np.array([[max_tokens]], dtype=np.int32),
"end_id": np.array([[self.eos_token_id]], dtype=np.int32),
"pad_id": np.array([[self.eos_token_id]], dtype=np.int32),
"streaming": np.array([[self.decoupled]], dtype=np.bool_),
"runtime_top_p": np.array([[0.95]], dtype=np.float32),
"runtime_top_k": np.array([[50]], dtype=np.int32),
"temperature": np.array([[0.8]], dtype=np.float32),
"repetition_penalty": np.array([[1.1]], dtype=np.float32),
"random_seed": np.array([[42]], dtype=np.uint64),
"input_ids": input_ids,
"input_lengths": np.array([[input_ids.shape[1]]], dtype=np.int32),
}
# Convert inputs to Triton tensors
input_tensor_list = [
pb_utils.Tensor(k, v) for k, v in input_dict.items()
]
# Create and execute inference request
llm_request = pb_utils.InferenceRequest(
model_name="tensorrt_llm",
requested_output_names=["output_ids", "sequence_length"],
inputs=input_tensor_list,
)
llm_responses = llm_request.exec(decoupled=self.decoupled)
if self.decoupled:
for llm_response in llm_responses:
if llm_response.has_error():
raise pb_utils.TritonModelException(llm_response.error().message())
# Extract and process output
output_ids = pb_utils.get_output_tensor_by_name(
llm_response, "output_ids").as_numpy()
seq_lens = pb_utils.get_output_tensor_by_name(
llm_response, "sequence_length").as_numpy()
# Get actual output IDs up to the sequence length
actual_output_ids = output_ids[0][0][:seq_lens[0][0]]
yield actual_output_ids
else:
llm_response = llm_responses
if llm_response.has_error():
raise pb_utils.TritonModelException(llm_response.error().message())
# Extract and process output
output_ids = pb_utils.get_output_tensor_by_name(
llm_response, "output_ids").as_numpy()
seq_lens = pb_utils.get_output_tensor_by_name(
llm_response, "sequence_length").as_numpy()
# Get actual output IDs up to the sequence length
actual_output_ids = output_ids[0][0][:seq_lens[0][0]]
yield actual_output_ids
def forward_audio_tokenizer(self, wav, wav_len):
"""Forward pass through the audio tokenizer component.
Args:
wav: Input waveform tensor
wav_len: Waveform length tensor
Returns:
Tuple of global and semantic tokens
"""
inference_request = pb_utils.InferenceRequest(
model_name='audio_tokenizer',
requested_output_names=['prompt_speech_tokens'],
inputs=[wav, wav_len]
)
inference_response = inference_request.exec()
if inference_response.has_error():
raise pb_utils.TritonModelException(inference_response.error().message())
# Extract and convert output tensors
prompt_speech_tokens = pb_utils.get_output_tensor_by_name(inference_response, 'prompt_speech_tokens')
prompt_speech_tokens = torch.utils.dlpack.from_dlpack(prompt_speech_tokens.to_dlpack()).cpu()
return prompt_speech_tokens
def forward_speaker_embedding(self, wav):
"""Forward pass through the speaker embedding component.
Args:
wav: Input waveform tensor
Returns:
Prompt speaker embedding tensor
"""
inference_request = pb_utils.InferenceRequest(
model_name='speaker_embedding',
requested_output_names=['prompt_spk_embedding'],
inputs=[pb_utils.Tensor.from_dlpack("reference_wav", to_dlpack(wav))]
)
inference_response = inference_request.exec()
if inference_response.has_error():
raise pb_utils.TritonModelException(inference_response.error().message())
# Extract and convert output tensors
prompt_spk_embedding = pb_utils.get_output_tensor_by_name(inference_response, 'prompt_spk_embedding')
prompt_spk_embedding = torch.utils.dlpack.from_dlpack(prompt_spk_embedding.to_dlpack())
return prompt_spk_embedding
def forward_token2wav(
self,
target_speech_tokens: torch.Tensor,
request_id: str,
prompt_speech_tokens: torch.Tensor = None,
prompt_speech_feat: torch.Tensor = None,
prompt_spk_embedding: torch.Tensor = None,
token_offset: int = None,
finalize: bool = None) -> torch.Tensor:
"""Forward pass through the vocoder component.
Args:
prompt_speech_tokens: Prompt speech tokens tensor
prompt_speech_feat: Prompt speech feat tensor
prompt_spk_embedding: Prompt spk embedding tensor
target_speech_tokens: Target speech tokens tensor
Returns:
Generated waveform tensor
"""
target_speech_tokens_tensor = pb_utils.Tensor.from_dlpack("target_speech_tokens", to_dlpack(target_speech_tokens))
inputs_tensor = [target_speech_tokens_tensor]
if token_offset is not None:
assert finalize is not None
token_offset_tensor = pb_utils.Tensor("token_offset", np.array([[token_offset]], dtype=np.int32))
finalize_tensor = pb_utils.Tensor("finalize", np.array([[finalize]], dtype=np.bool_))
inputs_tensor.append(token_offset_tensor)
inputs_tensor.append(finalize_tensor)
if prompt_spk_embedding is not None:
assert prompt_speech_feat is not None
prompt_speech_tokens_tensor = pb_utils.Tensor.from_dlpack("prompt_speech_tokens", to_dlpack(prompt_speech_tokens))
prompt_speech_feat_tensor = pb_utils.Tensor.from_dlpack("prompt_speech_feat", to_dlpack(prompt_speech_feat))
prompt_spk_embedding_tensor = pb_utils.Tensor.from_dlpack("prompt_spk_embedding", to_dlpack(prompt_spk_embedding))
inputs_tensor.extend([prompt_speech_tokens_tensor, prompt_speech_feat_tensor, prompt_spk_embedding_tensor])
# Create and execute inference request
inference_request = pb_utils.InferenceRequest(
model_name='token2wav',
requested_output_names=['waveform'],
inputs=inputs_tensor,
request_id=request_id,
)
inference_response = inference_request.exec()
if inference_response.has_error():
raise pb_utils.TritonModelException(inference_response.error().message())
# Extract and convert output waveform
waveform = pb_utils.get_output_tensor_by_name(inference_response, 'waveform')
waveform = torch.utils.dlpack.from_dlpack(waveform.to_dlpack()).cpu()
return waveform
def parse_input(self, text, prompt_text, prompt_speech_tokens):
total_text = f"{prompt_text}{text}"
prompt = self.prompt_template.format(input_text=total_text)
input_ids = self.tokenizer.encode(prompt)
input_ids = torch.tensor([input_ids], dtype=torch.int32)
input_ids = torch.cat([input_ids, prompt_speech_tokens], dim=1)
return input_ids
def _extract_speech_feat(self, speech):
speech_feat = mel_spectrogram(
speech,
n_fft=1920,
num_mels=80,
sampling_rate=24000,
hop_size=480,
win_size=1920,
fmin=0,
fmax=8000).squeeze(
dim=0).transpose(
0,
1).to(
self.device)
speech_feat = speech_feat.unsqueeze(dim=0)
return speech_feat
def _llm_gen_thread(self, generated_ids_iter, semantic_token_ids_arr, llm_is_done_flag):
for generated_ids in generated_ids_iter:
generated_ids = generated_ids.tolist()
if len(generated_ids) == 0:
break
semantic_token_ids_arr.extend(generated_ids)
llm_is_done_flag[0] = True
def execute(self, requests):
"""Execute inference on the batched requests.
Args:
requests: List of inference requests
Returns:
List of inference responses containing generated audio
"""
responses = []
for request in requests:
request_id = request.request_id()
# Extract input tensors
wav = pb_utils.get_input_tensor_by_name(request, "reference_wav")
# Process reference audio through audio tokenizer
if wav is not None:
wav_len = pb_utils.get_input_tensor_by_name(request, "reference_wav_len")
prompt_speech_tokens = self.forward_audio_tokenizer(wav, wav_len)
prompt_speech_tokens = prompt_speech_tokens.unsqueeze(0)
wav_tensor = wav.as_numpy()
wav_tensor = torch.from_numpy(wav_tensor)[:, :wav_len.as_numpy()[0][0]]
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=24000)(wav_tensor)
speech_feat = self._extract_speech_feat(prompt_speech_resample)
token_len = min(int(speech_feat.shape[1] / 2), prompt_speech_tokens.shape[-1])
prompt_speech_feat = speech_feat[:, :2 * token_len].contiguous().half()
prompt_speech_tokens = prompt_speech_tokens[:, :token_len].contiguous()
reference_text = pb_utils.get_input_tensor_by_name(request, "reference_text").as_numpy()
reference_text = reference_text[0][0].decode('utf-8')
prompt_spk_embedding = self.forward_speaker_embedding(wav_tensor)
else:
# using pre-cached reference text
reference_text = self.default_spk_info["prompt_text"]
prompt_speech_tokens = self.default_spk_info["speech_token"] + ORIGINAL_VOCAB_SIZE
prompt_speech_feat = None
prompt_spk_embedding = None
target_text = pb_utils.get_input_tensor_by_name(request, "target_text").as_numpy()
target_text = target_text[0][0].decode('utf-8')
# Prepare prompt for LLM
input_ids = self.parse_input(
text=target_text,
prompt_text=reference_text,
prompt_speech_tokens=prompt_speech_tokens,
)
# Generate semantic tokens with LLM
generated_ids_iter = self.forward_llm(input_ids)
if self.decoupled:
response_sender = request.get_response_sender()
semantic_token_ids_arr = []
llm_is_done_flag = [False]
llm_thread = threading.Thread(
target=self._llm_gen_thread,
args=(generated_ids_iter, semantic_token_ids_arr, llm_is_done_flag)
)
llm_thread.start()
token_offset, chunk_index = 0, 0
start_time = time.time()
this_token_hop_len = self.token_hop_len
while True:
pending_num = len(semantic_token_ids_arr) - token_offset
if llm_is_done_flag[0]:
break
if pending_num >= this_token_hop_len + self.flow_pre_lookahead_len:
this_tts_speech_token = semantic_token_ids_arr[:token_offset + this_token_hop_len + self.flow_pre_lookahead_len]
this_tts_speech_token = torch.tensor(this_tts_speech_token).unsqueeze(dim=0).to(torch.int32).to(self.device)
sub_tts_speech = self.forward_token2wav(
this_tts_speech_token, request_id, prompt_speech_tokens,
prompt_speech_feat, prompt_spk_embedding, token_offset, False
)
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech))
inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
response_sender.send(inference_response)
token_offset += this_token_hop_len
self.logger.log_info(f"chunk_index: {chunk_index}, current_token_hop_len: {this_token_hop_len}")
if self.dynamic_chunk_strategy == "exponential":
this_token_hop_len = self.token_frame_rate * (2 ** chunk_index)
elif self.dynamic_chunk_strategy == "time_based":
# see https://github.com/qi-hua/async_cosyvoice/blob/main/model.py#L306
cost_time = time.time() - start_time
duration = token_offset / self.token_frame_rate
if chunk_index > 0 and cost_time > 0:
avg_chunk_processing_time = cost_time / (chunk_index + 1)
if avg_chunk_processing_time > 0:
multiples = (duration - cost_time) / avg_chunk_processing_time
self.logger.log_info(f"multiples: {multiples}")
next_pending_num = len(semantic_token_ids_arr) - token_offset
if multiples > 4:
this_token_hop_len = (next_pending_num // self.token_hop_len + 1) * self.token_hop_len
elif multiples > 2:
this_token_hop_len = (next_pending_num // self.token_hop_len) * self.token_hop_len
else:
this_token_hop_len = self.token_hop_len
this_token_hop_len = max(self.token_hop_len, this_token_hop_len)
chunk_index += 1
else:
time.sleep(0.02)
this_tts_speech_token = torch.tensor(semantic_token_ids_arr).unsqueeze(dim=0).to(torch.int32).to(self.device)
sub_tts_speech = self.forward_token2wav(this_tts_speech_token, request_id, prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding, token_offset, True)
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech))
inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
response_sender.send(inference_response)
llm_thread.join()
response_sender.send(flags=pb_utils.TRITONSERVER_RESPONSE_COMPLETE_FINAL)
self.logger.log_info("send tritonserver_response_complete_final to end")
else:
generated_ids = next(generated_ids_iter)
generated_ids = torch.tensor(generated_ids).unsqueeze(0).to(self.device)
if generated_ids is None or len(generated_ids) == 0:
raise pb_utils.TritonModelException("Generated IDs is None or empty")
audio = self.forward_token2wav(generated_ids, request_id, prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding)
# Prepare response
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(audio))
inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
responses.append(inference_response)
if not self.decoupled:
return responses

View File

@@ -0,0 +1,73 @@
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
name: "cosyvoice2"
backend: "python"
max_batch_size: ${triton_max_batch_size}
dynamic_batching {
max_queue_delay_microseconds: ${max_queue_delay_microseconds}
}
model_transaction_policy {
decoupled: ${decoupled_mode}
}
parameters [
{
key: "llm_tokenizer_dir",
value: {string_value:"${llm_tokenizer_dir}"}
},
{
key: "model_dir",
value: {string_value:"${model_dir}"}
}
]
input [
{
name: "reference_wav"
data_type: TYPE_FP32
dims: [-1]
optional: true
},
{
name: "reference_wav_len"
data_type: TYPE_INT32
dims: [1]
optional: true
},
{
name: "reference_text"
data_type: TYPE_STRING
dims: [1]
optional: true
},
{
name: "target_text"
data_type: TYPE_STRING
dims: [1]
}
]
output [
{
name: "waveform"
data_type: TYPE_FP32
dims: [ -1 ]
}
]
instance_group [
{
count: ${bls_instance_num}
kind: KIND_CPU
}
]

View File

@@ -0,0 +1,278 @@
# Copyright 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import json
import os
import logging
from typing import List, Dict
import torch
from torch.utils.dlpack import to_dlpack
from torch.nn import functional as F
import triton_python_backend_utils as pb_utils
from hyperpyyaml import load_hyperpyyaml
from cosyvoice.utils.common import fade_in_out
from cosyvoice.utils.file_utils import convert_onnx_to_trt, export_cosyvoice2_vllm
from cosyvoice.utils.common import TrtContextWrapper
from collections import defaultdict
import numpy as np
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
ORIGINAL_VOCAB_SIZE = 151663
torch.set_num_threads(1)
class CosyVoice2:
def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False, trt_concurrent=1, device='cuda'):
self.model_dir = model_dir
self.fp16 = fp16
hyper_yaml_path = '{}/cosyvoice2.yaml'.format(model_dir)
if not os.path.exists(hyper_yaml_path):
raise ValueError('{} not found!'.format(hyper_yaml_path))
with open(hyper_yaml_path, 'r') as f:
configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')})
self.model = CosyVoice2Model(configs['flow'], configs['hift'], fp16, device)
self.model.load('{}/flow.pt'.format(model_dir), '{}/hift.pt'.format(model_dir))
if load_jit:
self.model.load_jit('{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
if load_trt:
self.model.load_trt('{}/flow.decoder.estimator.{}.mygpu.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
'{}/flow.decoder.estimator.fp32.onnx'.format(model_dir),
trt_concurrent,
self.fp16)
class CosyVoice2Model:
def __init__(self,
flow: torch.nn.Module,
hift: torch.nn.Module,
fp16: bool = False,
device: str = 'cuda'):
self.device = device
self.flow = flow
self.hift = hift
self.fp16 = fp16
if self.fp16 is True:
self.flow.half()
# streaming tts config
self.token_hop_len = 25
self.mel_cache_len = 8
self.source_cache_len = int(self.mel_cache_len * 480)
self.speech_window = np.hamming(2 * self.source_cache_len)
self.hift_cache_dict = defaultdict(lambda: None)
def load_jit(self, flow_encoder_model):
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
self.flow.encoder = flow_encoder
def load(self, flow_model, hift_model):
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device), strict=True)
self.flow.to(self.device).eval()
# in case hift_model is a hifigan model
hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(hift_model, map_location=self.device).items()}
self.hift.load_state_dict(hift_state_dict, strict=True)
self.hift.to(self.device).eval()
def load_trt(self, flow_decoder_estimator_model, flow_decoder_onnx_model, trt_concurrent, fp16):
assert torch.cuda.is_available(), 'tensorrt only supports gpu!'
if not os.path.exists(flow_decoder_estimator_model) or os.path.getsize(flow_decoder_estimator_model) == 0:
convert_onnx_to_trt(flow_decoder_estimator_model, self.get_trt_kwargs(), flow_decoder_onnx_model, fp16)
del self.flow.decoder.estimator
import tensorrt as trt
with open(flow_decoder_estimator_model, 'rb') as f:
estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
assert estimator_engine is not None, 'failed to load trt {}'.format(flow_decoder_estimator_model)
self.flow.decoder.estimator = TrtContextWrapper(estimator_engine, trt_concurrent=trt_concurrent, device=self.device)
def get_trt_kwargs(self):
min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2, 80, 4)]
opt_shape = [(2, 80, 500), (2, 1, 500), (2, 80, 500), (2, 80, 500)]
max_shape = [(2, 80, 3000), (2, 1, 3000), (2, 80, 3000), (2, 80, 3000)]
input_names = ["x", "mask", "mu", "cond"]
return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}
def token2wav(self, token, prompt_token, prompt_feat, embedding, token_offset, uuid, stream=False, finalize=False, speed=1.0):
with torch.cuda.amp.autocast(self.fp16):
tts_mel, _ = self.flow.inference(token=token.to(self.device),
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
prompt_token=prompt_token.to(self.device),
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
prompt_feat=prompt_feat.to(self.device),
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
embedding=embedding.to(self.device),
streaming=stream,
finalize=finalize)
tts_mel = tts_mel[:, :, token_offset * self.flow.token_mel_ratio:]
# append hift cache
if self.hift_cache_dict[uuid] is not None:
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
else:
hift_cache_source = torch.zeros(1, 1, 0)
# keep overlap mel and hift cache
if finalize is False:
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
if self.hift_cache_dict[uuid] is not None:
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
'source': tts_source[:, :, -self.source_cache_len:],
'speech': tts_speech[:, -self.source_cache_len:]}
tts_speech = tts_speech[:, :-self.source_cache_len]
else:
if speed != 1.0:
assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
if self.hift_cache_dict[uuid] is not None:
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
return tts_speech
class TritonPythonModel:
"""Triton Python model for vocoder.
This model takes global and semantic tokens as input and generates audio waveforms
using the BiCodec vocoder.
"""
def initialize(self, args):
"""Initialize the model.
Args:
args: Dictionary containing model configuration
"""
# Parse model parameters
parameters = json.loads(args['model_config'])['parameters']
model_params = {key: value["string_value"] for key, value in parameters.items()}
model_dir = model_params["model_dir"]
# Initialize device and vocoder
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
logger.info(f"Initializing vocoder from {model_dir} on {self.device}")
self.token2wav_model = CosyVoice2(
model_dir, load_jit=False, load_trt=True, fp16=True, device=self.device
)
spk_info_path = os.path.join(model_dir, "spk2info.pt")
if not os.path.exists(spk_info_path):
raise ValueError(f"spk2info.pt not found in {model_dir}")
spk_info = torch.load(spk_info_path, map_location="cpu", weights_only=False)
self.default_spk_info = spk_info["001"]
logger.info("Token2Wav initialized successfully")
def execute(self, requests):
"""Execute inference on the batched requests.
Args:
requests: List of inference requests
Returns:
List of inference responses containing generated waveforms
"""
responses = []
# Process each request in batch
for request in requests:
target_speech_tokens_tensor = pb_utils.get_input_tensor_by_name(request, "target_speech_tokens").as_numpy()
target_speech_tokens = torch.from_numpy(target_speech_tokens_tensor).to(self.device)
prompt_speech_tokens_tensor = pb_utils.get_input_tensor_by_name(request, "prompt_speech_tokens")
if prompt_speech_tokens_tensor is not None:
prompt_speech_tokens_tensor = prompt_speech_tokens_tensor.as_numpy()
prompt_speech_feat_tensor = pb_utils.get_input_tensor_by_name(request, "prompt_speech_feat").as_numpy()
prompt_spk_embedding_tensor = pb_utils.get_input_tensor_by_name(request, "prompt_spk_embedding").as_numpy()
prompt_speech_tokens = torch.from_numpy(prompt_speech_tokens_tensor).to(self.device)
prompt_speech_feat = torch.from_numpy(prompt_speech_feat_tensor).to(self.device)
prompt_spk_embedding = torch.from_numpy(prompt_spk_embedding_tensor).to(self.device)
prompt_speech_tokens = prompt_speech_tokens - ORIGINAL_VOCAB_SIZE
else:
prompt_speech_tokens = self.default_spk_info["speech_token"].to(self.device)
prompt_speech_feat = self.default_spk_info["speech_feat"].to(torch.float16).to(self.device)
prompt_spk_embedding = self.default_spk_info["embedding"].to(torch.float16).to(self.device)
# shift the speech tokens according to the original vocab size
target_speech_tokens = target_speech_tokens - ORIGINAL_VOCAB_SIZE
# We set token_offset as an optional input to support streaming/offline tts. It has to be None when offline tts.
token_offset = pb_utils.get_input_tensor_by_name(request, "token_offset")
if token_offset is not None:
token_offset = token_offset.as_numpy().item()
finalize = pb_utils.get_input_tensor_by_name(request, "finalize").as_numpy().item()
if not finalize:
stream = True
else:
stream = False
request_id = request.request_id()
audio_hat = self.token2wav_model.model.token2wav(token=target_speech_tokens,
prompt_token=prompt_speech_tokens,
prompt_feat=prompt_speech_feat,
embedding=prompt_spk_embedding,
token_offset=token_offset,
uuid=request_id,
stream=stream,
finalize=finalize)
if finalize:
self.token2wav_model.model.hift_cache_dict.pop(request_id)
else:
tts_mel, _ = self.token2wav_model.model.flow.inference(
token=target_speech_tokens,
token_len=torch.tensor([target_speech_tokens.shape[1]], dtype=torch.int32).to(
self.device
),
prompt_token=prompt_speech_tokens,
prompt_token_len=torch.tensor(
[prompt_speech_tokens.shape[1]], dtype=torch.int32
).to(self.device),
prompt_feat=prompt_speech_feat,
prompt_feat_len=torch.tensor([prompt_speech_feat.shape[1]], dtype=torch.int32).to(self.device),
embedding=prompt_spk_embedding,
streaming=False,
finalize=True,
)
audio_hat, _ = self.token2wav_model.model.hift.inference(
speech_feat=tts_mel, cache_source=torch.zeros(1, 1, 0)
)
generated_wave = audio_hat.squeeze(0).cpu().numpy()
wav_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(audio_hat))
inference_response = pb_utils.InferenceResponse(output_tensors=[wav_tensor])
responses.append(inference_response)
return responses

View File

@@ -0,0 +1,80 @@
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
name: "token2wav"
backend: "python"
max_batch_size: ${triton_max_batch_size}
dynamic_batching {
max_queue_delay_microseconds: ${max_queue_delay_microseconds}
}
parameters [
{
key: "model_dir",
value: {string_value:"${model_dir}"}
}
]
input [
{
name: "target_speech_tokens"
data_type: TYPE_INT32
dims: [-1]
},
{
name: "prompt_speech_tokens"
data_type: TYPE_INT32
dims: [-1]
optional: true
},
{
name: "prompt_speech_feat"
data_type: TYPE_FP16
dims: [-1, 80]
optional: true
},
{
name: "prompt_spk_embedding"
data_type: TYPE_FP16
dims: [-1]
optional: true
},
{
name: "token_offset"
data_type: TYPE_INT32
dims: [ 1 ]
reshape: { shape: [ ] }
optional: true
},
{
name: "finalize"
data_type: TYPE_BOOL
dims: [ 1 ]
reshape: { shape: [ ] }
optional: true
}
]
output [
{
name: "waveform"
data_type: TYPE_FP32
dims: [ -1 ]
}
]
instance_group [
{
count: 1
kind: KIND_CPU
}
]