diff --git a/requirements.txt b/requirements.txt index 4166dac..e482020 100644 --- a/requirements.txt +++ b/requirements.txt @@ -3,6 +3,8 @@ conformer==0.3.2 deepspeed==0.14.2; sys_platform == 'linux' diffusers==0.29.0 +fastapi==0.115.6 +fastapi-cli==0.0.4 gdown==5.1.0 gradio==5.4.0 grpcio==1.57.0 @@ -34,7 +36,5 @@ torch==2.3.1 torchaudio==2.3.1 transformers==4.40.1 uvicorn==0.30.0 -wget==3.2 -fastapi==0.115.6 -fastapi-cli==0.0.4 WeTextProcessing==1.0.3 +wget==3.2 diff --git a/test1.py b/test1.py new file mode 100644 index 0000000..a1243e4 --- /dev/null +++ b/test1.py @@ -0,0 +1,37 @@ +import sys +sys.path.append('third_party/Matcha-TTS') +from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2 +from cosyvoice.utils.file_utils import load_wav +import torchaudio # type: ignore + +cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=False, load_trt=False, fp16=False, use_flow_cache=False) + +# NOTE if you want to reproduce the results on https://funaudiollm.github.io/cosyvoice2, please add text_frontend=False during inference +# zero_shot usage +prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000) +for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)): + torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate) + +# save zero_shot spk for future usage +assert cosyvoice.add_zero_shot_spk('希望你以后能够做的比我还好呦。', prompt_speech_16k, 'my_zero_shot_spk') is True +for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '', '', zero_shot_spk_id='my_zero_shot_spk', stream=False)): + torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate) +cosyvoice.save_spkinfo() + +# fine grained control, for supported control, check cosyvoice/tokenizer/tokenizer.py#L248 +for i, j in enumerate(cosyvoice.inference_cross_lingual('在他讲述那个荒诞故事的过程中,他突然[laughter]停下来,因为他自己也被逗笑了[laughter]。', prompt_speech_16k, stream=False)): + torchaudio.save('fine_grained_control_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate) + +# instruct usage +for i, j in enumerate(cosyvoice.inference_instruct2('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '用四川话说这句话', prompt_speech_16k, stream=False)): + torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate) + +# bistream usage, you can use generator as input, this is useful when using text llm model as input +# NOTE you should still have some basic sentence split logic because llm can not handle arbitrary sentence length +def text_generator(): + yield '收到好友从远方寄来的生日礼物,' + yield '那份意外的惊喜与深深的祝福' + yield '让我心中充满了甜蜜的快乐,' + yield '笑容如花儿般绽放。' +for i, j in enumerate(cosyvoice.inference_zero_shot(text_generator(), '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)): + torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate) \ No newline at end of file